PEMODELAN NUMERIK DINAMIKA SUMBER TEKANAN GUNUNG SINABUNG BERDASARKAN DATA GPS TAHUN 2011-2016

DISERTASI

Karya tulis sebagai salah satu syarat untuk memperoleh gelar Doktor dari Institut Teknologi Bandung

Oleh RATIH KUMALASARI NIM: 30213001 (Program Studi Doktor Fisika)

INSTITUT TEKNOLOGI BANDUNG JULI 2019

ABSTRAK

PEMODELAN NUMERIK DINAMIKA SUMBER TEKANAN GUNUNG SINABUNG BERDASARKAN DATA GPS TAHUN 2011-2016

Oleh Ratih Kumalasari NIM: 30213001 (Program Studi Doktor Fisika)

Gunung Sinabung mulai erupsi sejak tanggal 27 Agustus 2010 setelah selama 1200 tahun yang lalu tidak ada catatan aktivitas erupsi terkait Gunung Sinabung. Erupsi Gunung Sinabung terus terjadi hingga saat ini (tahun 2019). Berdasarkan haltersebut perlu dilakukan analisis terkait guna memprediksi posisi dan volume sumber tekanan. Studi ini bertujuan untuk menprediksi kedalaman dan volume dari sumber tekanan berdasarkan data GPS. Data GPS yang digunakan mencakup data GPS lokal dari stasiun-stasiun pengamatan GPS kontinu milik PVMBG (Pusat Vulkanologi dan Mitigasi Bencana Geologi) di sekitar Gunung Sinabung, data diolah dengan perangkat lunak GAMIT/GLOBK 10.6. yang diikatkan secara relatif terhadap stasiun SAMP guna mereduksi pengaruh kegempaan. Sebelum dilakukan inversi maka dilakukan pembagian periode terhadap data berdasarkan pola kelurusan dari time series, dalam penellitian diperoleh 12 periode yang kemudian dilakukan inversi menggunakan model Mogi dan McTigue dengan skema Very Fast Simulated Annealing (VFSA) dan Particle Swarm Optimization (PSO). Hasil inversi menunjukan hasil yang cukup baik dari segi misfit maupun dari segi respon model, baik menggunakan PSO maupun VFSA. Dari hasil analisis data dikaitkan dengan aktivitas kegempaan dan kondisi Geologi Gunung Sinabung diperoleh kantong magma yang terkonsentrasi pada 3 lokasi yaitu kantong magma dangkal pada kedalaman sekitar 0,5-1,3 km yang terdiri dari kantongkantong magma yang tersebar pada sektor timur laut dan barat laut dari Gunung Sinabung, kantong magma menengah antara dangkal dan dalam pada kedalaman 3,8km dan kantong magma dalam pada kedalaman 16,9km. Kata kunci: Gunung Sinabung, GPS, sumber tekanan, VFSA, PSO

ABSTRACT

NUMERICAL MODELING OF DYNAMICS PRESSURE SOURCE OF SINABUNG VOLCANO BASED ON GPS DATA IN 2011-2016

By

Ratih Kumalasari NIM: 30213001 (Doctoral Program in Physic)

Sinabung Volcano has begun to erupt since August 27th, 2010 after 1200 years of dormant. The eruption continues until now (2019), so it is necessary to do an analysis to predict the position and volume of the pressure source. This study aims to predict the depth and volume of the magma chambers based on GPS data. The GPS data used included local data from continuous GPS observation stations belonging to the PVMBG (Center for Volcanology and Geological Disaster Mitigation) around Sinabung Volcano. Data were processed by GAMIT / GLOBK 10.6 software. The data were relatively tied to the SAMP station to reduce the effect of seismicity. Before the inversion, the period of data was divided based on the trend line of the time series. The research obtained 12 periods, then each of periods was inverted by Mogi and McTigue models on particle swarn optimization (PSO) and very fast simulated annealing (VFSA) schemes. The inversion of both schemes shows satisfactory results in terms of misfit as well as model responses. From the data analysis associated with seismic activity and geological conditions of Sinabung Volcano, three local pressure source locations were found, namely shallow magma chamber at a depth of about 0.5km-1.3 km, moderate magma chamber at 3.8 km and deep magma chamber at 16.5 km.

Keyword: Sinabung Volcano, GPS, VFSA, PSO, Pressure Source

PEMODELAN NUMERIK DINAMIKA SUMBER TEKANAN GUNUNG SINABUNG BERDASARKAN DATA GPS TAHUN 2011-2016

Oleh Ratih Kumalasari NIM: 30213001 (Program Studi Doktor Fisika)

Institut Teknologi Bandung

Menyetujui Tim Pembimbing

29 Juli 2019

Ketua

(Wahyu Srigutomo, Ph.D)

Anggota

(Prof. Dr. -Ing. Mitra Djamal)

Anggota

wanpro 00 (Dr. Irwan Meilano, S.T., M.Sc)

PEDOMAN PENGGUNAAN DISERTASI

Disertasi Doktor yang tidak dipublikasikan terdaftar dan tersedia di Perpustakaan Institut Teknologi Bandung, dan terbuka untuk umum dengan ketentuan bahwa hak cipta ada pada penulis dengan mengikuti aturan HaKI yang berlaku di Institut Teknologi Bandung. Referensi kepustakaan diperkenankan dicatat, tetapi pengutipan atau peringkasan hanya dapat dilakukan seizin penulis dan harus disertai dengan kaidah ilmiah untuk menyebutkan sumbernya.

Sitasi hasil penelitian Disertasi ini dapat di tulis dalam bahasa Indonesia sebagai berikut:

Kumalasari, Ratih. (2019): *Pemodelan Numerik dinamika Sumber Tekanan Gunung Sinabung Bedasarkan Data GPS Tahun 2011-2016*, Disertasi Program Doktor, Institut Teknologi Bandung.

dan dalam bahasa Inggris sebagai berikut:

Kumalasari, Ratih. (2019): Numerical Modeling of Dynamics Pressure source of Sinabung Volcano Based on GPS Data in 2011-2016, Doctoral Dissertation, Institut Teknologi Bandung.

Memperbanyak atau menerbitkan sebagian atau seluruh disertasi haruslah seizin Dekan Sekolah Pascasarjana, Institut Teknologi Bandung.

Dipersembahkan kepada papa Barnabas, mama Sri Martuti, Ibu Widarningsiih, Bapak Suhardoono, Mas Chandra, Mbak Nia, Abang Franz, Angga, Tyok, Dewa, Ansel, Talenta serta keluarga besarku tercinta yang senantiasa mendukung lahir dan batin.

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas terselesaikannya penulisan Disertasi ini.

Dalam kesempatan ini penulis juga ingin menyampaikan banyak sekali terima kasih kepada berbagai pihak yang mendukung tahap demi tahap studi penulis hingga selesai:

- Bapak Wahyu Srigutomo, Ph.D sebagai promotor I, atas segala bimbingan, dan kebaikan yang diberikan kepada penulis.
- 2. Bapak Prof. Dr. Ing Mitra Djamal sebagai promotor II, atas segala bimbingan, dan kebaikan yang diberikan kepada penulis.
- 3. Bapak Dr. Irwan Meilano sebagai Promotor III, atas segala bimbingan, dan kebaikan yang diberikan kepada penulis.
- Bapak Dr. Hendra Gunawan (Kepala Bidang Mitigasi Gunungapi PVMBG) yang telah memberikan pengetahuan tentang GPS di Gunung Sinabung.
- 5. Kepala Pusat Vulkanologi dan Mitigasi Bencana Geologi untuk pemberian izin penggunaan data terkait Gunung Sinabung.
- 6. Prof. Hendra Grandis, Dr. Surono dan Dr. Alamta tim penguji disertasi atas segala masukan dan tanggapan
- 7. Dr. Soenarto Rektor UBK yang memberikan kesempatan untuk studi S3.
- 8. Seluruh staf dosen dan karyawan Program Studi Fisika ITB.
- Rekan-Rekan Laboratorium pemodelan dan inversi ITB: Fajar, Heri, Mas Cahyo, Kang Dhanu, Teh Anggi, Bang Hamdi, Desi, Reni, Dea, Bavita, Ari dan teman-teman yang lain yang selalu memberikan masukan dan semangat.
- 10. Rekan-Rekan mahasiswa laboratorium GREAT ITB: Wulan, Putra, Rio dan Alwy yang selalu memberikan masukan dan semangat.

- Rekan-Rekan doktor fisika Angkatan 2013: Bu Lasmi, Mbak Rita, Elfi, Kak Ocik, Rahmad, Yati, Rifki dan teman-teman yang lain yang selalu memberikan semangat.
- 12. Rekan-rekan pelesiran 44: Tante Ida, Om Fiber, Bu Ida, Bu Qori, Mbak Ifa, Yola, Nurul, Nila dan Mutia yang selalu memberikan semangat
- 13. Rekan-rekan dosen UBK dan UBHARA: bapak Hernowo, bapak Sri Purba, ibu Sri Pudji, bapak Alex, bapak Gunawan, bu Fauziah, bu Minik, bu Mega, mas Tono dan rekan-rekan yang lain yang selalu memberikan semangat.
- 14. Sahabat yang selalu menyemangati dan mendoakan: Bunda Icha, Lutfi, Latifah, Yani, Mba Ias, Yulis. Serta rekan-rekan komunitas yang selalu memberikan semangat untuk menyelesaikan disertasi: Nadabaca, Baba, GPS, Aimi Jabar dan GWIS Club.
- 15. Dan kepada semua pihak yang tidak dapat penulis sebutkan satu-persatu.

Bandung, Juli 2019

Penulis

DAFTAR ISI

ABSTR	AK .		i			
ABSTRAKii						
HALAN	IAN P	ENGESAHAN	i			
PEDOM	IAN PI	ENGGUNAAN DISERTASI	iiv			
HALAN	IAN P	ERUNTUKAN	v			
KATA F	PENGA	ANTAR	vi			
DAFTA	R ISI.		vii			
DAFTAR LAMPIRAN						
DAFTA	R GAN	MBAR DAN ILUSTRASI	X			
DAFTA	R TAF	BEL	xiii			
Bab I	I	Pendahuluan	2			
	I.1 L	atar Belakang	2			
	I.2 T	ujuan Penelitian	2			
	I.3 R	uang Lingkup Penelitian	2			
	I.4 M	Ietodologi Penelitian	3			
	I.5 Si	istematika Penulisan Disertasi	3			
	I.6 K	eterbaruan	4			
Bab II	7	Finjauan Pustaka	6			
	II.1G	unung Sinabung	5			
	II.2M	Ionitoring Pada Gunung Sinabung	8			
		II.2.1 Monitoring Deformasi Permukaan	8			
		II.2.2 Monitoring Seismisitas Gunung Sinabung	10			
	II.3 M	Iodel Gunungapi	13			
		II.3.1 Model Mogi	13			
		II.3.2 Model McTigue	14			
Bab III	ľ	Metode Penelitian	16			
	III.1	Alur Penelitian	16			
	III.2	Analisis Data Deformasi	17			
	III.3	Perhitungan Nilai Pergeseran	19			
	III.4	Pemodelan Kedepan	20			
	III.5	Inversi Very Fast Simulated Annealing (VFSA)	21			
	III.6	Particle Swarm Optimization (PSO)				
Bab IV	I	Hasil dan Pembahasan				
	IV.1	Data Pengamatan dan Koordinat Refrensi				
	IV.2	Displacement Time Series Relatif terhadap ITRF 200)8 dan			
		SAMP				
	IV.3	Periode Gunung Sinabung				
	IV.4	Pemodelan Kedepan				
	IV.5	Inversi dengan Data Sintetik	40			
	IV.6	Pemodelan Sumber Tekanan	42			
Bab V	Kesin	ıpulan	70			
DAFTA	DAFTAR PUSTAKA7					
LAMPIRAN						

DAFTAR LAMPIRAN

Lampiran 1 Plot stasiun SAMP terhadap ITRF 2008	76
Lampiran 1 Plot stasiun LKWR terhadap ITRF 2008	77
Lampiran 3 Plot stasiun SKNL terhadap ITRF 2008	78
Lampiran 4 Plot stasiun GRKI terhadap ITRF 2008	79
Lampiran 5 Plot stasiun MRDG terhadap ITRF 2008	80
Lampiran 6 Plot stasiun SNBGA terhadap ITRF 2008	81
Lampiran 7 Plot stasiun SNBGB terhadap ITRF 2008	82
Lampiran 8 Plot stasiun LKWR relatif terhadap SAMP	83
Lampiran 9 Plot stasiun SKNL relatif terhadap SAMP	84
Lampiran 10 Plot stasiun GRKI relatif terhadap SAMP	85
Lampiran 11 Plot stasiun MRDG relatif terhadap SAMP	86
Lampiran 12 Plot stasiun SNBGA relatif terhadap SAMP	87
Lampiran 13 Plot stasiun SNBGB relatif terhadap SAMP	88
Lampiran 14 Plot kegempaan harian pada Gunung Sinabung	89
Lampiran 15 Plot pembagian periode berdasaarkan kelurusan time se	ries90
Lampiran 16 Grafik misfit periode 1	91
Lampiran 17 Grafik misfit periode 2	93
Lampiran 18 Grafik misfit periode 3	95
Lampiran 19 Grafik misfit periode 4	97
Lampiran 20 Grafik misfit periode 5	99
Lampiran 21 Grafik misfit periode 6	101
Lampiran 22 Grafik misfit periode 7	103
Lampiran 23 Grafik misfit periode 8	105
Lampiran 23 Grafik misfit periode 8 Lampiran 24 Grafik misfit periode 9	105
Lampiran 23 Grafik misfit periode 8 Lampiran 24 Grafik misfit periode 9 Lampiran 25 Grafik misfit periode 10	105 107 109
Lampiran 23 Grafik misfit periode 8 Lampiran 24 Grafik misfit periode 9 Lampiran 25 Grafik misfit periode 10 Lampiran 26 Grafik misfit periode 11	105 107 109 111
Lampiran 23 Grafik misfit periode 8 Lampiran 24 Grafik misfit periode 9 Lampiran 25 Grafik misfit periode 10 Lampiran 26 Grafik misfit periode 11 Lampiran 16 Grafik misfit periode 12	105 107 109 111 113

DAFTAR GAMBAR DAN ILUSTRASI

Gambar I.1	Peta lokasi Gunung Sinabung	1
Gambar II.1	Peta Subduksi Sumatera	6
Gambar II.2	Erupsi Gunung Sinabung pada tanggal 30 Agustus 2010	7
Gambar II.3	Inflasi dan Deflasi pada gunungapi	9
Gambar II.4	Peta stasiun GPS lokal yang digunakan	10
Gambar II.5	Kegempaan yang dominan pada Gunung Sinabung	11
Gambar II.6	Distribusi hiposenter hasil relokasi gempa-gempa volcano-	
	tectonic (Indrastuti, 2014)	12
Gambar II.7	Model Mogi	14
Gambar III.1	Flowchart penellitian disertasi	16
Gambar III.2	Diagram pemodelan kedepan pada berbagai model numerik	
	gunungapi	20
Gambar III.3	Diagram iversi pada gunungapi	21
Gambar III.4	Flowchart inversi non linier VFSA	25
Gambar III.4	Flowchart inversi non linier PSO	28
Gambar IV.1	Peta stasiun GPS Lokal yang digunakan	30
Gambar IV.2	Peta stasiun IGS yang digunakan	31
Gambar IV.3	Plot stasiun SAMP terhadap ITRF 2008	31
Gambar IV.4	Plot stasiun LKWR terhadap ITRF 2008	32
Gambar IV.5	Plot stasiun SKNL terhadap ITRF 2008	32
Gambar IV.6	Plot stasiun GRKI terhadap ITRF 2008	33
Gambar IV.7	Plot stasiun MRDG terhadap ITRF 2008	33
Gambar IV.8	Plot stasiun SNBGA terhadap ITRF 2008	34
Gambar IV.9	Plot stasiun SNBGB terhadap ITRF 2008	34
Gambar IV.1	0 Plot stasiun LKWR relatif terhadap SAMP	35
Gambar IV.1	1 Plot stasiun SKNL relatif terhadap SAMP	35
Gambar IV.1	2 Plot stasiun GRKI relatif terhadap SAMP	36
Gambar IV.1	3 Plot stasiun MRDG relatif terhadap SAMP	36
Gambar IV.1	4 Plot stasiun SNBGA relatif terhadap SAMP	37
Gambar IV.1	5 Plot stasiun SNBGB relatif terhadap SAMP	37
Gambar IV.1	6Plot pembagian periode berdasaarkan kelurusan time series.	38
Gambar IV.1	7 Pemodelan Kedepan Deformasi Permukaan menggunakan	
	Model (a) Mogi dan (b) McTigue	40
Gambar IV.1	8 Inversi data sintetik dengan (a) Model Mogi menggunakan	
	PSO, (b) Model McTigue menggunakan PSO, (c) Model Mo	gi
	menggunakan VFSA, (d) Model McTigue menggunakan	
	VFSA.	41
Gambar IV.1	9 Misfit data Sintetik dengan (a) Model Mogi menggunakan	
	PSO, (b) Model McTigue menggunakan PSO, (c) Model Mo	gi
	menggunakan VFSA, (d) Model McTigue menggunakan	
	VFSA.	42
Gambar IV.20	0 Hasil pemodelan dan misfit pada periode 1 (a) vektor deform	asi
1	permukaan pada periode 1. (b) Inversi data dengan model M	ogi
	menggunakan VFSA. (c) Inversi data dengan model McTig	gue
	menggunakan VFSA. (d) Inversi data dengan model M	ogi

menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakanPSO 43
Gambar IV.21 Kedalaman sumber tekanan pada periode 1
Gambar IV.22 Hasil pemodelan dan misfit pada periode 2(a) vektor deformasi
permukaan pada periode 2. (b) Inversi data dengan model Mogi
menggunakan VFSA. (c) Inversi data dengan model McTigue
menggunakan VFSA. (d) Inversi data dengan model Mogi
menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakanPSO 45
Gambar IV.23 Kedalaman sumber tekanan pada periode 2
Gambar IV.24 Hasil pemodelan dan misfit pada periode 3 (a) vektor deformasi
permukaan pada periode 3. (b) Inversi data dengan model Mogi
menggunakan VFSA. (c) Inversi data dengan model McTigue
menggunakan VFSA. (d) Inversi data dengan model Mogi
menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakanPSO47
Gambar IV.25 Kedalaman sumber tekanan pada periode 3 48
Gambar IV.26 Hasil pemodelan dan misfit pada periode 4 (a) vektor deformasi
permukaan pada periode 4. (b) Inversi data dengan model Mogi
menggunakan VFSA. (c) Inversi data dengan model McTigue
menggunakan VFSA. (d) Inversi data dengan model Mogi
menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakan PSO 49
Gambar IV.27Kedalaman sumber tekanan pada periode 4 50
Gambar IV.28 Hasil pemodelan dan misfit pada periode 5(a) vektor deformasi
permukaan pada periode 5. (b) Inversi data dengan model Mogi
menggunakan VFSA. (c) Inversi data dengan model McTigue
menggunakan VFSA. (d) Inversi data dengan model Mogi
menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakan PSO 51
Gambar IV.29 Kedalaman sumber tekanan pada periode 4
Gambar IV.30 Hasil pemodelan dan misfit pada periode 6 (a) vektor deformasi
permukaan pada periode 6. (b) Inversi data dengan model Mogi
menggunakan VFSA. (c) Inversi data dengan model McTigue
menggunakan VFSA. (d) Inversi data dengan model Mogi
menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakan PSO 53
Gambar IV.31 Kedalaman sumber tekanan pada periode 6
Gambar IV.32 Kegempaan harian Gunung Sinabung Periode 6 55
Gambar IV.33 Hasil pemodelan dan misfit pada periode 7 (a) vektor deformasi
permukaan pada periode 7. (b) Inversi data dengan model Mogi
menggunakan VFSA. (c) Inversi data dengan model McTigue
menggunakan VFSA. (d) Inversi data dengan model Mogi
menggunakan PSO. (e) Inversi data dengan model McTigue
menggunakan PSO
Gambar IV.34 Kedalaman sumber tekanan pada periode 7
Gambar IV.35 Kegempaan harian Gunung Sinabung Periode /

- Gambar IV.36 Hasil pemodelan dan misfit pada periode 8 (a) vektor deformasi permukaan pada periode 8. (b) Inversi data dengan model Mogi menggunakan VFSA. (c) Inversi data dengan model McTigue menggunakan VFSA. (d) Inversi data dengan model Mogi menggunakan PSO. (e) Inversi data dengan model McTigue menggunakan PSO.
- Gambar IV.37 Kedalaman sumber tekanan pada periode 8......60

- Gambar IV.40 Hasil pemodelan dan misfit pada periode 10 (a) vektor deformasi permukaan pada periode 10. (b) Inversi data dengan model Mogi menggunakan VFSA. (c) Inversi data dengan model McTigue menggunakan VFSA. (d) Inversi data dengan model Mogi menggunakan PSO. (e) Inversi data dengan model McTigue menggunakan PSO.

- Gambar IV.42 Hasil pemodelan dan misfit pada periode 11 (a) vektor deformasi permukaan pada periode 11. (b) Inversi data dengan model Mogi menggunakan VFSA. (c) Inversi data dengan model McTigue menggunakan VFSA. (d) Inversi data dengan model Mogi menggunakan PSO. (e) Inversi data dengan model McTigue menggunakan PSO.
- Gambar IV.44 Hasil pemodelan dan misfit pada periode 12 (a) vektor deformasi permukaan pada periode 12. (b) Inversi data dengan model Mogi menggunakan VFSA. (c) Inversi data dengan model McTigue menggunakan VFSA. (d) Inversi data dengan model Mogi menggunakan PSO. (e) Inversi data dengan model McTigue menggunakan PSO.

DAFTAR TABEL

Tabel IV.1 Koordinat Referensi	29
Tabel IV.2 Perubahan Posisi Setiap Periode	
Tabel IV.3 Data Hasil Sintetik dengan menggunakan model Mo	gi dan
McTigue	40
Tabel IV.4 Data pameter hasil inversi pada periode 1	44
Tabel IV.5 Data pameter hasil inversi pada periode 2	46
Tabel IV.6 Data pameter hasil inversi pada periode 3	
Tabel IV.7 Data pameter hasil inversi pada periode 4	50
Tabel IV.8 Data pameter hasil inversi pada periode 5	52
Tabel IV.9 Data pameter hasil inversi pada periode 6	54
Tabel IV.10 Data pameter hasil inversi pada periode 7	57
Tabel IV.11 Data pameter hasil inversi pada periode 8	59
Tabel IV.12 Data pameter hasil inversi pada periode 9	61
Tabel IV.13 Data pameter hasil inversi pada periode 10	63
Tabel IV.13 Data pameter hasil inversi pada periode 11	65
Tabel IV.13 Data pameter hasil inversi pada periode 12	67

Bab I Pendahuluan

I.1 Latar Belakang

Wilayah Indonesia terletak pada pertemuan beberapa lempeng tektonik yaitu Lempeng Eurasia, Lempeng Indo-Australia, dan Lempeng Pasifik. Hal ini meyebabkan adanya aktivitas subduksi sehingga terbentuk banyak gunungapi di Indonesia, salah satunya adalah Gunung Sinabung. Gunung Sinabung merupakan gunungapi tipe strato yang secara administratif berada di Kabupaten Karo, Provinsi Sumatera Utara, dengan ketinggian puncak 2.460 m di atas permukaan laut, dengan koordinat 3° 10' LU dan 98° 23,5' BT (PVMBG, 2010).

Gambar I.1 Peta lokasi Gunung Sinabung

Sebelum tahun 2010 Gunung Sinabung merupakan gunungapi tipe B yaitu gunungapi yang sejak tahun 1600 belum pernah tercatat aktivitas erupsinya, namun masih memperlihatkan gejala vulkanisme seperti adanya lapangan solfatar atau fumarol. Aktivitas erupsi Gunung Sinabung baru tercatat sejak bulan Agustus 2010, sehingga

klasifikasi Gunung Sinabung menjadi gunungapi tipe A dan dilakukan monitoring secara kontinu untuk memitigasi bahaya letusan yang ditimbulkan.

Aktivitas erupsi gunungapi pada umumnya didahului oleh gejala awal atau prekursor, seperti peningkatan aktivitas kegempaan, peningkatan suhu mata air panas, perubahan komposisi maupun kekuatan hembusan gas, serta adanya deformasi pada tubuh gunungapi tersebut. Untuk dapat melakukan pemantauan aktivitas suatu gunungapi dengan baik diperlukan masukan data dari berbagai macam metode pemantauan, salah satunya adalah metode pemantauan deformasi dengan menggunakan data GPS.

I.2 Tujuan Penelitian

Tujuan yang ingin dicapai dalam penelitian ini adalah:

- Melakukan analisis *time series* deformasi permukaan pada stasiun-stasiun GPS kontinu di sekitar Gunung Sinabung dan mengikatkan relatif terhadap stasiun lokal agar dapat mengurangi pengaruh aktivitas tektonik, sehingga data yang diolah menjadi lebih merefleksikan aktivitas vulkanik di tubuh Gunung Sinabung.
- Melakukan pemodelan inversi yang dibagi dalam beberapa periode perhitungan deformasi permukaan, untuk memperoleh estimasi kedalaman dan perubahan volume sumber tekanan di tubuh Gunung Sinabung.

I.3 Ruang Lingkup Penelitian

Ruang lingkup penelitian yang dilakukan adalah analisis deformasi gunungapi pada lokasi Gunung Sinabung, berdasarkan data GPS kontinyu dengan menggunakan data 5 stasiun GPS lokal milik Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) yaitu LKWR, GRKI, SAMP, MRDG, DAN SNBG ditambah 1 satsiun GPS Milik Badan Informasi Geospasial (BIG) yaitu SAMP dan 10 stasiun *International GNSS Service* (IGS) yaitu BAKO, COCO, NTUS, PIMO, DARW, CUSV, XMIS, DGAV, PBRI dan IISC. Adapun periode data yang digunakan adalah sejak April 2011 hingga 10 September 2016.

I.4 Metodologi Penelitian

Metodologi yang dilakukan penelitian ini adalah sebagai berikut:

- Mengumpulkan informasi dari studi literatur mengenai karakteristik Gunung Sinabung dan mengumpulkan data GPS yang akan diolah dari instansi PVMBG (Pusat Vulkanologi dan Mitigasi Bencana Geologi) dan BIG (Badan Informasi Geospasial).
- Melakukan pengolahan data GPS dengan menggunakan perangkat lunak GAMIT/GLOBK 10.6 dan sekaligus juga mengunduh secara otomatis data GPS dari stasiun-stasiun IGS.
- 3. Melakukan analisis *time series* deformasi permukaan dari stasiun-stasiun GPS yang digunakan terhadap ITRF (*The International Terrestrial Reference Frame*) 2008 untuk menentukan strategi pengolahan data selanjutnya. Strategi pengolahan data harus ditentukan secara baik agar dapat meminimalisir pengaruh ketidakstabilan stasiun yang akan menjadi titik ikat lokal dan juga meminimalisir pengaruh tektonik pada hasil pengolahan data.
- 4. Melakukan analisis *time series* deformasi permukaan terhadap titik ikat lokal dan melakukan pehitungan nilai deformasi permukaan *setiap periode* sebagai masukan data yang akan digunakan dalam pemodelan.
- Melakukan pemodelan dengan skema inversi Very Fast Simulated Annealing (VFSA) dan Partikel Swarm Optimation (PSO) terhadap hasil pengolahan data GPS untuk menentukan kedalaman dan perubahan volume pada sumber tekanan.

I.5 Sistematika Penulisan Disertasi

Sistematika dalam penulisan disertasi ini terdiri dari enam bab yaitu:

- BAB I. PENDAHULUAN

Bab ini menguraikan latar belakang penelitian, tujuan penelitian, ruang lingkup penelitian, metodologi penelitian dan sistematika penulisan Disertasi.

- BAB II. TINJAUAN PUSTAKA

Bab ini memaparkan mengenai karakteristik Gunung Sinabung dan beberapa hasil dari penelitian terdahulu.

- BAB III. DASAR TEORI

Bab ini memuat landasan-landasan teori dari penelitian yang dilakukan.

- BAB IV. DATA DAN METODE

Bab ini menjelaskan mengenai data yang digunakan dan metode pengolahan data.

- BAB V. HASIL DAN PEMBAHASAN

Bab ini memuat hasil pengolahan data, pemodelan dan pembahasan.

- BAB VI. KESIMPULAN DAN SARAN

Pada bab ini dipaparkan kesimpulan akhir dari hasil penelitian yang dilakukan dan saran untuk penelitian selanjutnya.

I.6. Keterbaruan

Beberapa keterbaruan riset yang terdapat dalam penelitian disertasi ini di antaranya adalah:

1. Beberapa model deformasi dari gunungapi telah dipecahkan dan disimulasikan secara numerik, sehingga kita dapat menggunakan beberapa model tersebut untuk gunungapi di Indonesia, karena setiap gunungapi memiliki karakteristik yang berbeda maka kita memilih model yang sesuai dengan karakterstik dengan gunungapi yang telah ditentukan. Dengan data yang ada kemudian dilakukan pemodelan inversi guna mengestimasi kedalaman dan perubahan volume dari sumber tekanan (*magma chamber*) suatu gunungapi. Nilai dari kedalaman dan perubahan volume dari pusat tekanan tersebut merupakan keterbaruan, serta pemilihan terhadap salah satu gunungapi yang belum pernah dimodelkan atau tidak sedang dimodelkan dengan model yang digunakan dalam studi. Dalam disertasi ini keterbaruan terkait model adalah penggunaan model Mogi dan McTigue untuk Gunung Sinabung.

2. Model terpilih yaitu Mogi dan McTigue selanjutnya diinversi dengan skema inversi Very Fast Simulated Annealing (VFSA) dan Particle Swarm Optimization (PSO) untuk memperoleh parameter sumber tekanan (magma chamber) dan jari-jari sumber tekanan yang digunakan untuk memperoleh perubahan volume sumber tekanan pada Gunung Sinabung. Penggunaan skema inversi VFSA dan PSO pada model Mogi dan McTigue merupakan keterbaruan dalam disertasi ini.

Bab II Tinjauan Pustaka

II.1 Gunung Sinabung

Gunung Sinabung merupakan salah satu gunung aktif di Indonesia, gunung yang berbentuk strato ini terletak di Kabupaten Karo, Sumatera Utara yang secara geografis terletak pada 30°10'LU dan 98°23'BT dengan puncak setinggi 2.460meter di atas permukaan laut adalah bagian dari rantai gunungapi disepanjang busur Sunda sepanjang 5.000 km yang disebebkan oleh subduksi disepanjang Sumatra (Diament, dkk, 1992; Ali, dkk., 2006). Busur sunda terbentuk dari pertemuan antara lempeng Indo-Autralia dan Lempeng Benua Eurasia yang ditunjukan pada Gambar II.1, dengan kecepatan pergerakan lempeng Indo-Australia sebesar 5cm/tahun di Sumatera Utara (McCaffrey, 2009). Gunung berapi aktif di Sumatera rata-rata terletak pada 100km hingga 150km diatas lempeng subduksi (Hattherton dan Dickinson, 1969; Sieh dan Natawidjaja, 2000).

Gambar II.1 Peta Subduksi Sumatera (McCaffrey, 2009)

Sejak 1200 tahun yang lalu hingga 27 Agustus 2010 Gunung Sinabung tidak memiliki catatan sejarah hingga erupsi freatik pada tanggal tersebut yang kemudian diikuti dengan letesuan freatik pada tanggal 29 Agustus 2010, setelah letusan freatik pertama dan kedua Gunung Sinabung terus menerus erupsi pada tanggal 30 Agustus 2010 hingga erupsi terjadi dengan kolom abu vulkanik mencapai 2000 meter (Gambar II.2), kemudian aktivitas Gunung Sinabung didominasi emisi gas, tremor dan gempa volkanotektektonik hingga tanggal 2 September 2010. Letusan serupa terjadi pada tanggal 15 September 2013 dengan kolom abu vulkanik mencapai 5000meter dan diikuti penambahan jumlah jumlah vulkanotektonik. Tidak adanya catatan aktivitas erupsi vulkanis semenjak tahun 1600 dan hanya adanya catatan berupa aktivitas solfatara pada puncak sinabung pada tahun 1912 maka Gunung Sinabung dimasukan dalam gunungapi tipe B sehingga tidak mendapat perhatian khusus, namun semenjak erupsi pada agustus 2010 PVMBG menaikan stastus menjadi gunungapi tipe A dan mulai dipasang stasiun pengamatan GPS untuk mengetahui besar dana arah pergeseran titik-titik di Gunung Sinabung (McGuire, 1995; Pratomo, 2006; Sutawidjaja, 2010).

Gambar II.2 Erupsi Gunung Sinabung pada tanggal 30 Agustus 2010

Pada tahun 2013 hingga 2016 Gunung Sinabung terus erupsi, Gunawan (2017) mebagi Gunung Sinabung menjadi beberapa Fase, pada fase pertama pada tanggal 1 Juli 2013 – 18 Desember 2013 berada dalam fase freatomagmatik, fase kedua pada tanggal 18 Desember 2013-10 Januari 2014 adalah fase aliran blok dan abu vulkanik *Pyroclastic Density Current* (PDC), pada fase ketiga yaitu pada tanggal 10 januri 2014 sampai pertengahan September 2014 adalah fase aliran dan guguran lava. Pada fase keempat yaitu pada pertengahan September 2014 hingga Juli 2015 adalah fase terbentuknya kubah lava dan runtuhnya kubah lava ke selatan, dan pada fase kelima yaitu pada Agustus 2015 hingga 2016 yaitu fase runtuhnya kubah lava dan letusan abu vulkanik ke arah timur dan tenggara (Gunawan,2017).

II. 2 Monitoring pada Gunung Sinabung

Pemantauan gunung berapi Sinabung dilakukan oleh Pusat Vulkanologi dan Mitigasi Bencana Kegunungapian (PVMBG) yang bekerjasama dengan *Volcano Disaster Assistance Program (VDAP)* dari USGS dan USAID, dan Observatorium Gunung Berapi Sakurajima (SVO) Universitas Kyoto. Pemantuan gunung berapi Sinabung antara lain yaitu pemantuan seismic dengan 11 seismograf permanen (Indrastuti, 2017), 5 Stasiun GPS sejak tahun 2011(Hotta, 2017), pemantauan kemiringan dengan EDM dan GAS (Primulyana, 2017), Pemantauan visual dengan webcam, inframerah dan pengamatan satelit (Pallister, 2017) serta analisis abu dan lava volkanik (Nakada, 2017).

II.2.1 Monitoring Deformasi Permukaan

Perubahan bentuk, dimensi dan posisi suatu benda dinamakan dengan deformasi. Deformasi pada gunungapi adalah perubahan dari permukaan bumi berupa kenaikan permukaan tanah (infalsi) maupun penurunan permukaan tanah (deflasi) yang disebabkan oleh aktivitas gunungapi yaitu akibat perubahan sumber tekanan dari tubuh gunungapi yang disebabkan oleh pergerakan magma, gas dan uap air menuju ke luar dari tubuh gunungapi. Inflasi sendiri pada umumnya disebabkan oleh proses pergerakan magma kepermukaan yang menyebabkan dinding tanah diatasnya naik dan deformasi maksimal biasanya terjadi tepat saat gunungapi akan erupsi, inflasi yang besar biasanya menandakan bahwa gunungapi tersebut akan erupsi (Scarpa dan Gasparini, 1995).

sedangkan deflasi pada umumnya terjadi pada saat magma dari dalam gunungapi telah keluar dan tekanan dari dalam gunungapi melemah sehingga permukaan tanah cenderung kembali ke posisi awal (Kuang, 1996).

Gambar II.3 Inflasi dan deflasi pada gunungapi

Untuk mengetahui besarnya deformasi permukaan gunungapi dapat dilakukan dengan metode geodetik yaitu GPS (Global positioning System). GPS (*Global Positioning System*) adalah sistem radio navigasi dan penentuan posisi menggunakan satelit yang dimiliki dan dikelola oleh Amerika Serikat. Sistem ini dapat digunakan oleh banyak orang sekaligus dalam segala cuaca, serta didesain untuk memberikan posisi dan kecepatan tiga-dimensi yang teliti dan juga informasi mengenai waktu secara kontinu di seluruh dunia tanpa tergantung cuaca (Abidin, dkk., 1997; Abidin, dkk., 2004; Abidin, dkk., 2006). Prinsip pemantauan gunungapi dengan GPS adalah menentukan nilai perubahan koordinat pada stasiun-stasiun pengamatan di sekitar gunungapi relatif terhadap titik yang dianggap stabil, sehingga dapat merefleksikan deformasi akibat pengaruh vulkanik. Selain dapat dijadikan sebagai prekursor aktivitas erupsi, pengamatan deformasi pada gunungapi juga dapat menggambarkan adanya peningkatan atau penurunan suplai magma di bawah permukaan.

Gambar II.4 Peta stasiun GPS lokal yang digunakan

Hasil penelitian sebelumnya dengan menggukan data GPS antara lain dilakukan oleh Kurnia dkk. (2013) mengestimasi kedalaman dan volume sumber tekanan berdasarkan data GPS di Gunung Sinabung pada periode Agustus 2012 – Mei 2013, dengan asumsi bahwa lokasi sumber tekanan berada tepat di bawah puncak. Hasil yang diperoleh yaitu pusat sumber tekanan dengan kedalaman sekitar 11,4 km dari puncak dan volume material pada sumber tekanan berkisar antara 259 juta m³ hingga 273 juta m³.

II.2.1 Monitoring Seismisitas Gunung Sinabung

Pada bulan oktober 2010 PVMBG bekerjasama dengan Lembaga penelitian mitigasi bencana Universitar Kyoto memasang 6 stasiun seismik yang dilekapi oleh seismometer 3 komponn disekitar Gunung Sinabung dan Sibayak, sebelumya sudah terpasang 4 stasiun seismik disekitar sinabung. Data seismic didigitalkan menggunakan EDR 7000 sistem Kinkei dengan laju pengambilan sampel 250 Hz dan diunduh setiap bulan (Hendrasto, dkk., 2012).

Seismisitas yang terjadi di Sinabung dijelaskan oleh Hendrasto, dkk (2012) dan Indrastuti (2017) kedalam enam jenis yaitu gempa volcanotektonik (VT) yang terbagi menjadi dua yaitu gempa volcanotektonik dalam disebut sebagai gempa volcanotektonik tipe VA dan gempa vulkanotektonik dangkal disebut sebagai gempa vulkanotektonik tipe VB, gempa hibrid, gempa frekuensi rendah (LF), gempa emisi gas dan tremor yang ditunjukan pada gambar II.4.

Gambar II.5 Kegempaan yang dominan pada Gunung Sinabung (Gunawan, 2017)

Gempa Volcanotektonik dalam (VA) di Sinabung dicirikan dengan onset yang jelas dengan interval S-P khas antara 1 detik hingga 3,5 detik dan volcano tektonik dangkal (VB) memiliki interval S-P kurang dari 1 detik. Gempa hibrid ditandai dengan onset frekuensi tinggi diikuti oleh frekuensi rendah. Gempa frekuensi rendah (LF) dicirikan dengan frekuensi mulai 0.2 Hz hingga 5 Hz dengan durasi mulai 8 detik hingga 15 detik. Gempa bumi emisi gas ditandai dengan frekuensi yang tinggi disertai keluarnya gas dari kawah, dan gempa tremor adalah gempa yang muncul sebelum dan sesudah erupsi.

Dari penelitian yang dilakukan oleh Indrastuti (2014), berdasarkan data kegempaan volkanotektonik di Gunung Sinabung periode Oktober 2010 hingga Juli 2013, didapatkan hasil relokasi sebaran hiposenter yang relatif berpusat pada kedalaman 0-16 km di bawah permukaan laut dengan jarak horisontal maksimum sekitar 8 km dari puncak. Sebaran hiposenter hasil relokasi ini tidak menunjukkan secara langsung lokasi dan kedalaman dapur magma, namun dapat menjadi informasi tambahan dalam melakukan pemodelan sumber tekanan.

Gambar II.6 Distribusi hiposenter hasil relokasi gempa-gempa volkanotektonik (Indrastuti, 2015)

II.3 Model Gunungapi

Deformasi pada tubuh gunungapi dapat dimodelkan untuk memprediksi lokasi, kedalaman, bentuk, ukuran dan sumber tekanan dari gunungapi, nilai rata-rata dari deformasi permukaan dapat digunakan untuk mengetahui perubahan tekanan *magma chamber* yang kemudian dapat digunakan untuk memprediksi volume dari *magma chamber* (Dvorak dan Dzurisin, 1977). Model matematis berkaitan dengan deformasi permukaan dari aktivitas tektonik dan vulkanik yang telah dikembangkan antara lain sebagai berikut:

II.3.1 Model Mogi (Point Pressure)

Model Mogi (1958) mengasumsikan bahwa kerak bumi merupakan medium setengah elastik dan deformasi yang terjadi pada gunungapi disebabkan oleh sumber tekanan berupa titik yang terletak pada kedalaman tertentu. Apabila terjadi perubahan hidrostatis pada bola tersebut maka akan terjadi deformasi secara simetris. Dijelaskan dalam buku *volcano deformation* bahwa perubahan posisi suatu titik (*displacement*) di permukaan yang diakibatkan oleh perubahan tekanan hidrostatis di dalam rongga kerak bumi dengan radius lebih kecil dari kedalaman $(a \ll d)$ dinyatakan dalam Persamaan model mogi sebagai berikut:

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \alpha^{3} \Delta P \frac{(1-\upsilon)}{G} \begin{pmatrix} \frac{x}{R^{3}} \\ \frac{y}{R^{3}} \\ \frac{z}{R^{3}} \end{pmatrix}$$
(II.1)

Dimana *d* adalah kedalaman sumber teanan, *r* adalah jarak radial sumber tekanan terhadap titik pantau, ΔV adalah perubahan volume sumber tekanan, v adalah poisons ratio, *G* adalah shear modulus, dan ΔP adalah perubahan tekanan. Yang secara grafik digambarkan sebagai berikut:

Gambar II.7 Model Mogi

u, v, wadalah perubahan posisi pada titik x, y, 0 dan $R = \sqrt{x^2 + y^2 + d^2}$ adalah jarak radial dari satu titik ke permukaan. Kecepatan *supply* magma ke dalam pusat tekanan dapat diestimasi dengan menggunakan hubungan antara volume permukaan yang terdeformasi dengan kecepatan *lava discharge*. Hubungan antara volume permukaan yang terdeformasi (ΔV_{uplift}) dengan perubahan volume pada pusat tekanan $(\Delta V_{injection})$ (dinyatakan sebagai persamaan $\Delta V_{uplift} = 2(1-v)\Delta V_{injection}$ Dengan v adalah poissons's ratio atau $\Delta V = \frac{\Delta P}{G} \pi \alpha^3$ (Fialko, 2001).

II.3.2 Model McTigue

McTigue melakukan beberapa koreksi terhadap point pressure model mogi dikarenakan persamaan mogi hanya dapat memprediksi kedalaman lokasi dan besar pusat tekanan diharapakan dengan aproksimasi yang dilakukan McTigue diharapkan dapat memprediksi besar rongga yang mendapatkan tekanan. Secara matematis dirumuskan sebagai berikut:

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \alpha^{3} \Delta P \frac{(1-\upsilon)}{G} \left(\left(1 + \left(\frac{\alpha}{d} \right)^{3} \times \frac{(1+\upsilon)}{2(-7+5\upsilon)} + \frac{15d^{2}(-2+\upsilon)}{4R^{2}(-7+5\upsilon)} \right) \right) \left(\frac{\frac{x}{R^{3}}}{\frac{y}{R^{3}}} \right)$$
(II.2)

u, *v*, *w* adalah perubahan posisi pada titik *x*, *y*, 0 dan $R = \sqrt{x^2 + y^2 + d^2}$ adalah jarak radial dari satu titik ke permukaan. Vektor pergeseran berarah radial terhadap sumber mempunyai magnitude:

$$U_{r} = \sqrt{u^{2} + v^{2} + w^{2}} = \alpha^{3} \Delta P \frac{(1 - \upsilon)}{G} \frac{1}{R^{2}}$$
(II.3)

Magnitude bervariasi dan berbanding terbalik dengan jarak dari pusat rongga. Lokasi dari pusat (titik tengah dan kedalaman) dapat ditentukan dengan mengukur dua buah vektor pergeseran. Perbandingan $(w/U_r)r$ dengan $U_r = \sqrt{u^2 + v^2}$ sama dengan kedalaman sumber (McTigue,1987).

Bab III. Metode Penelitian

III.1 Alur Penelitian

Alur penelitian yang diguanakan dalam disertasi ini adalah sebagai berikut:

Gambar III.1 Flowchart penelitian disertasi

Penelitian ini diawalai dengan penulisan proposal dan mempelajari literatur berupa buku maupun jurnal-jurnal yang mendukung pekerjaan yang akan dilakukan berupa studi deformasi gunung api dan pemodelan terkait kegunungapian dan dilanjutkan dengan melakukan pengumpulan data GPS dengan bekerja sama dengan PVMBG dan dilanjutkan pengolahan data. Pengolahan data menggunakan GAMIT dilakukan di Laboratorium GREAT ITB (Graduate Research on Earth and Active Tectonic) kemudian dilanjutkan pemodelan dan validasi model gunungapi untuk memperoleh parameter sumber tekanan Gunung Sinabung di laboratorium pemodelan dan inversi fisika ITB, dan pada tahap akir penelitian adalah penulisan dan pelaporan disertasi.

III.2 Analisis Data Deformasi

Data yang diperoleh terkait aktivitas Gunung Sinabung adalah data GPS, pengolahan data GPS dilakukan dengan software GAMIT/GLOBK 10.6 di laboratorium GREAT ITB. Pada penelitian ini, pengolahan data GPS dilakukan dengan menggunakan perangkat lunak GAMIT/GLOBK 10.6. Perangkat lunak GAMIT/GLOBK ini memiliki fungsi untuk melakukan analisis data GPS secara komprehensif. GAMIT/GLOBK dikembangkan di *Massachusetts Institute of Technology* (MIT), *Harvard-Smithsonian Center for Astrophysics* (CFA), *the Scripps Institution of Oceanography* (SIO), dan *Australian National University* (Herring dkk, 2015).

Secara garis besar tahap-tahap pengolahan data GPS yang dilakukan pada penelitian ini yaitu:

- 1. Melakukan pengaturan file rinex menjadi file rinex harian dengan menggunakan perangkat lunak Teqc (Estey, 2014).
- 2. Melakukan update file *station.info* yang mencakup spesifikasi alat penerima dan antena pada keseluruhan stasiun yang digunakan dalam tiap periode.

- 3. Mengatur file *process.defaults* yang meliputi pengaturan tata letak folder file rinex, file koreksi, dan sampling interval data yang akan diolah, serta mengatur file *sites.defaults* yang meliputi pemberian nama eksperimen dan menentukan stasiun mana saja yang akan dimasukkan ke dalam proses pengolahan data.
- Menyiapkan file koordinat apriori dengan mengolah satu minggu data, melihat kestabilan data, dan merata-ratakan koordinat setiap stasiun pada periode satu minggu tersebut.
- Memproses data GPS terhadap ITRF 2008 dengan cara mengikatkan kepada lokasi stasiun-stasiun IGS yang dipilih memiliki posisi relatif mengelilingi Gunung Sinabung. Data stasiun-stasiun IGS ini diunduh secara otomatis oleh perangkat GAMIT/GLOBK 10.6 dengan perintah *sh_gamit*.
- Membuat *time series* pergeseran permukaan dari hasil yang didapatkan sebelumnya dengan perintah *sh_glred* untuk melihat kestabilan data di setiap stasiun.
- 7. Memilih strategi yang baik untuk pengolahan data selanjutnya agar dapat meminimalisir pengaruh ketidakstabilan stasiun yang akan menjadi titik ikat lokal dan juga meminimalisir pengaruh tektonik pada hasil pengolahan data.
- 8. Membuat kembali *time series* deformasi permukaan terhadap titik lokal yang dianggap stabil agar didapatkan hasil yang merefleksikan aktivitas vulkanik di bawah permukaan Gunung Sinabung.
- 9. Melakukan *filtering* terhadap *outlier*.
- 10. Melakukan pemilihan periode dengan memperhatikan pola kelurusankelurusan pada *time series* deformasi permukaan yang telah dibuat.
- 11. Menentukan nilai deformasi permukaan tiap periode.
- 12. Membuat pemodelan dengan menggunakan skema Very Fast Simulated Annealing (VFSA) dan PSO Partikel Swarm Optimisation (PSO)

Dalam proses pengolahan data GPS, perangkat lunak GAMIT/GLOBK memerlukan data pendukung agar dapat dilakukan reduksi *error* secara otomatis. Data pendukung yang diperlukan adalah data untuk koreksi ionosfer, koreksi orbit, *satellite clock*, dan informasi dari orbit satelit. Data pendukung tersebut tercakup dalam file *precise ephemeris data* (SP3) dan *navigation* files, yang dapat

didownload secara otomatis dengan menggunakan perintah *sh_gamit* (Herring, dkk., 2015). Proses penghilangan *outlier* dan perhitungan *velocity* pada perangkat lunak GAMIT/GLOBK dapat dilakukan dengan perintah *tsfit*. Pada penelitian ini *outlier* dihilangkan dengan mengatur batas standar deviasi harian maksimum 10 mm pada komponen horisontal dan maksimum 40 mm pada komponen vertikal. Plot *time series* dilakukan dengan perintah *sh_glred* yang juga memerlukan beberapa persiapan yaitu mempersiapkan pengaturan file *globk_comb.cmd* dan *glorg_comb.cmd*. Penentuan stasiun lokal yang akan dijadikan titik referensi dilakukan dengan mengaturan pada file *glorg_comb.cmd* (Herring dkk., 2015).

III.3 Perhitungan nilai pergeseran

Perhitungan besar pergeseran dilakukan untuk memperoleh nilai pergeseran tiap periode. Persamaan secara umum pada titik pengamatan secara linier ditunjukan pada persamaan (III.1)

$$y = mx + c \tag{III.1}$$

Dimana y = komponen pergeseran, waktu dan m = gradien dari persamaan linier. Theil- Sen melakukan estimasi dengan mencaari semua gradien yang mungkin dari setiap data. Kemudian ditentuak nilai gradien terbaik yang mewakili. Theil-Sen adalah suatu metode fitting kurva linier secara robust dengan mengambil median (G) dari semua gradien-gradien kemungkinan garis lurus. Sehingga nilai pergeseran yang digunakan adalah

$$G = median(m_i)$$
 (III.2)

$$\tilde{D} = G(X_{akhir} - X_{awal})$$
(III.3)

Dengan D = nilai pergeseran tiap periode dan G = median dari keseluruhan gradien. Standar deviasi dari pergeseran dihitung dengan menggunakan Median Absolute Deviation (MAD) seusai persamaan (III.4).

$$MAD = median \left| d_i - \tilde{D} \right|$$
 (III.4)

III. 4 Pemodelan Kedepan

Model merupakan representasi matematis dari suatu sistem yang menggambarkan bagaimana variabel- variabel dari sistem saling berhubungan untuk mendefinisikan suatu keadaan atau respon, model yang baik adalah model yang dapat dianalisa secara matematis dan dapat disimulasikan dengan perangkat komputasi. Pemodelan kedepan (forward modeling) adalah proses pemodelan matematis dari parameter fisis dalam geofika yang biasa menjadi parameter fisis adalah paremeter bawah permukaan yang bertujuan untuk memperoleh respon berupa data yang dalam geofisika adalah data dipermukaan bumi.

Secara umum hubungan antara data dan parameter model dapat dinyatakan sebagai berikut:

$$\mathbf{Gm} = \mathbf{d}$$
 (III.5)

Dimana **G** merupakan operator forward berupa fungsi umum dari pemodelan kedepan yang berbentuk matrix kernel, **m** adalah model yang berbentuk matriks kolom dan **d** adalah respon data yang berbentuk matriks kolom.

Pada kasus gunungapi ada beberapa model yang telah dikembangkan antara lain adalah Mogi model (*Point Pressure*), McTigue model (Finite spherical pressure source), Bonaccorso dan Davis model (Close pipe and Open pipe models), dan Sill-like *magma cham*ber model (Dzurisin, 2007). Diagram kerja secara umum dari pemodelan kedepan pada model-model gunungapi tersebut adalah sebagai berikut:

Gambar III.2 Diagram pemodelan kedepan pada berbagai model numerik gunungapi

Setiap model menghasilkan respon yang sama yaitu u adalah deformasi permukaan dalam arah x, v adalah deformasi permukaan pada arah y dan w adalah deformasi pada arah horizontal dari model bawah permukaan antara lain a jari-jari sumber tekanan, d adalah kedalaman sumber tekanan dan dP perubahan tekanan pada sumber tekanan.

III.5 Inversi Very Fast Simulated Annealing (VFSA)

Dalam geofisika data yang diketahui dan diperoleh dari pengamatan pada umumnya adalah data lapangan, sedangkan pada umumnya sering dibutuhkan juga informasi parameter bawah permukaan sehingga diperlukan suatu metode untuk memperoleh parameter bawah permukaan dari respon yang di dapat pada lapangan, metode yang biasa digunakan adalah inversi. Menke (1984) mendefinisikan inversi sebagai suatu kesatuan metode matematika atau statistika untuk mendapatkan informasi yang berguna mengenai suatu sistem fisika berdasarkan data observasi dari sistim tersebut. Pada kasus gunungapi data yang dimiliki adalah data deformasi permukaan sedangkan yang kita inginkan adalah model bawah permukaan berupa kedalamanan sumber tekanan, jari-jari sumber tekanan, perubahan tekanan per shear modulus ($\Delta P/G$) yang digambarkan sebagai berikut:

Gambar III. 3 Diagram iversi pada gunungapi

Metode inversi non-linier ada dua pendekatan yaitu inversi non-linier pendekatan lokal dan inversi non-linier pendekatan global. Dalam inversi pendekatan lokal perlu dibuat dahulu matrik Jacobi dari setiap parameter dan solusi inversi pendekatan lokal sangat bergantung pada tebakan model awal, ketika tebakan model awal jauh dari model sebenarnya maka kemungkinan dapat terjebak pada minimum lokal misfit padahal yang dituju adalah minimum global. Berdasarkan hal tersebut banyak peneliti yang mencari metode yang tidak membutuhkan matrik Jacobi sehingga ditemukan dan berkembang metode inversi yang hanya membutuhkan persamaan forwardnya yang disebut dengan inversi non-linier pendekatan global sehingga yang perlu diperhatikan adalah prosedur pemilihan model untuk pemodelan kedepan (Sen dan Stoffa, 2013).

Salah satu metode inversi *non-linier* pendekatan global adalah *very fast simulated annealing* (VFSA). Metode VFSA pertamakali ditemukan oleh Ingber (1988) yang idenya memodifikasi metode *simulated annealing* (SA), modifikasi tersebut dilakukan karena pada SA pada ruang model, setiap parameter model mempunyai rentang batas yang berbeda dan setiap parameter model mungkin memiliki efek terhadap misfit atau fungsi obyektif ketika dikenai kondisi yang berbeda, serta algoritma SA belum cukup cepat untuk menghitung penentuan random Cauchy sebanyak parameter model (Sen dan Stoffa, 2013). Permsalahan distribusi Cauchy berdimensi-M ini oleh Inger dihindari dengan menggunakan M product dari distribusi Cauchy 1-D. Kemudian Inger mengusulkan distribusi probabilitaas baru yang bergantung terhadap perubahan temperatur dan metode ini dinamakan very fast simulated annealing (VFSA) yang lebih efisien daripada SA dalam hal komputasi dan pemakaian memori karena VFSA tidak mengingat semua model seperti SA (Ingber dan Rosen, 1992).

VFSA adalah metode inversi non-linier pendekatan global yang mengadopsi peristiwa pembentukan kristal (annealing) dalam termodinamika, yang prosesnya yaitu pada awal pada saat temperatur tinggi suatu material berbentuk cair, kemudian melalui proses pendinginan secara perlahan-lahan menyebabkan terbentuknya kristal yang berasosiasi dengan energi sistem yang minimum, sehingga VFSA membutuhkan prosedur penurunan temperatur tertentu yaitu dengan distribusi probabilitas Boltzman. Probabilitas Boltzman menyatakan hubungan antara probabilitas suatu sistem pada satu konfigurasi *m* dan temperatur *T* dengan energi E sebagai fungsi dari konfigurasi tersebut.

$$P(m) \propto \exp\left(\frac{-E(m)}{kT}\right)$$
 (III.6)

Dengan k adalah konstanta Boltzman yang memiliki nilai k = 1 dan m menyatakan model sebanyak M. Pada kasus inversi geofisika, konfigurasi suatu sistem diibaratkan sebagai parameter model m dan energi sebagai fungsi misfit (fungsi obyektif, E), sedangkan T adalah faktor pengontrol. Berdasarkan persamaan (III.4) pertubasi konfigurasi sistem yang menghasilkan energi rendah maka model tersebut memiliki probabilitas terpilihnya lebih besar, namun pertubasi konfigurasi sistem
yang mengasilkan energi tinggi masih dimungkinkan untuk terpilih(Probabilitas tidak nol). Ketika temperatur menurun, pertubasi konfigurasi sistem yang menghasilkan energi lebih rendah memiliki probabilitas makin besar, sedangkan pertubasi konfigurasi sistem yang menghasilkan energi lebih tinggi akan mempunyai probabilitas terpilih sebagai model terbaik semakin kecil. Pada saat *T* mendekati 0 maka akan terbentuk kristal yaitu ketika konfigurasi berenergi minimum. Jika proses pendinginan terlalu cepat maka kondisi kesetimbangan dengan energi minimum tidak dapat dicapai sehingga membentuk kristal yang bersifat amorf atau cacat (Grandis, 2009).

Pada algoritma VFsa yang harus ditentukan terlebih dahulu adalah model awal (m^k) , dengan cara membangkitkan model secara random antara model minimum dan maksimum. Model minimum dan maksimun di dasarkan pada informasi 'prior' kondisi geologis di lapangan.

$$m_i^k = m_i^{\min} + r_1 \left(m_i^{\max} - m_i^{\min} \right)$$
(III.7)

Dimana $r_i \in [0,1]$, kemudian model awal tersebut dicek dan harus berada diantara model maksimum dan minimum dengan *i* adalah model ke-*i* dan *k* adalah iterasi ke-*k*.

$$m_i^{\min} \le m_i^k \le m_i^{\max} \tag{III.8}$$

Kemudian dilakukan pencarian model selanjutnya yaitu m_1^{k+1}

$$m_i^{k+1} = m_i^k + y_i \left(m_i^{\max} - m_i^{\min} \right)$$
 (III.9)

Dengan $y \in [-1,1]$, nilai y didapat dari distribusi berikut:

$$g_T(y) = \prod_{i=1}^{M} \frac{1}{2(|y_1| + T)in(1 + \frac{1}{T_i})} = \prod_{i=1}^{M} g_T(y_i)$$
(III.10)

Kemudian diperoleh probabilitas komulatif sebagai berikut:

$$G_T(y) = \int_{-1}^{y^i} \dots \int_{-1}^{y^D} dy^1 \dots dy'^M g_T(y') = \prod_{i=1}^M G_T^i(y_i)$$
(III.11)

$$G_{T}^{i}(y_{i}) = \frac{1}{2} + \frac{\operatorname{sgn}(y_{i})}{2} \frac{\ln\left[1 + \frac{|y_{i}|}{T_{i}}\right]}{\ln\left[1 + \frac{1}{T_{i}}\right]}$$
(III.12)

Sehingga diperoleh nilai y_i melalui pembangkitan bilangan random $u_i \in \bigcup[0,1]$ dari distribusi yang seragam, sehingga persamaannya menjadi:

$$y_i = \text{sgn}(u_i - 0.5)T_i \left[\left(1 + \frac{1}{T_i} \right)^{|2u_i - 1|} - 1 \right]$$
(III.13)

Berdasarkan persamaan diatas, Inger(1989) memperoleh aturan penggunaan temperatur sehingga distribusi dapat mencapai minimum global sebagai berikut:

$$T_{k+1}(k) = T_k \exp\left(-c_k k^{\frac{1}{M}}\right)$$
 (III.14)

Dimana T_k adalah temperatur sebelum dan T_{k+1} adalah temperatur setelahnya. Untuk iterasi pertama $T_k = T_{0k}$ dengan T_{0k} adalah temperatur awal untuk parameter model pada iterasi ke- k dan c_k adalah parameter untuk mengontrol penurunan temperatur dan membantu mempercepat pemilihan model yang konvergen pada kasus-kasus tertentu, nilai c_k biasanya bergantung pada kasus yang ditinjau, dalam penilitian ini ditetapkan nilai $c_k = 1$ pada seluruh iterasi.

Gambar III. 4 Flowchart inversi non linier VFSA

III.6 Particle Swarm Optimimization (PSO)

Particle Swarm Optimimization (PSO) merupakan algoritma optimasi yang meniru proses yang terjadi dalam kehidupan populasi burung (*flock of bird*) dan ikan (*school of fish*) dalam bertahan hidup yang dikembangkan oleh James Kennedy dan Russell Eberhart pada tahun 1995 (Martinez, 2010., Alam, 2016). Dalam *Particle Swarm Optimization* (PSO), kawanan diasumsikan sebagai partikel yang memiliki ukuran tertentu dan terletak pada suatu lokasi yang acak dalam ruang multidimensi pada posisi awalnya, setiap partikel tersebut diasumsikan memiliki dua karakteristik yaitu posisi dan kecepatan. Setiap partikel bergerak dalam ruang atau *space* tertentu dan mengingat posisi terbaik(pbest) yang pernah dilalui atau ditemukan terhadap sumber makanan atau nilai fungsi objektif, setiap partikel kemudian menyampaikan informasi atau posisi terbaiknya kepada partikel yang lain dan mengenai posisi yang terbaik (gbest) tersebut. Secara matematis kecepatan partikel diformulasikan sebagai berikut:

$$V_{ij}(t+1) = wv_{ij}(t) + c_1 r_1(p_{ij} - x_{ij}(t)) + c_2 r_2(p_g - x_{ij}(t))$$
(III.15)

$$x_{ij}(t+1) = x_{ij}(t) + v_{ij}(t+1)$$
(III.16)

Dimana $V_{ij}(t+1)$ merupakan update kecepatan yang akan digunakan dalam penetuan update posisi terbaiknya $x_{ij}(t+1)$. Kemudian ada konstanta yang digunakan dalam perumusan yaitu *w*, *inertia weight*, dan c yaitu koefisien kecepatan untuk PSO dan r adalah nilai random antara -1 sampai 1.

Update kecepatan untuk menentukan posisi terbaik dalam PSO sendiri dipengaruhi oleh tiga komponen sesuai dengan persaman III.15. Pada komponen pertama yaitu $wv_{ij}(t)$ adalah komponen inersia, $c_1 r_1(p_{ij} - x_{ij}(t))$ merupakan komponen kognitif, dan $c_2 r_2(p_g - x_{ij}(t))$ merupakan komponen social. Perez dan Behdian (2007) menjelaskan mengenai batasan nilai konstanta c (*accleleration coefficient*) dan w (*inertia weight*) yaitu:

$$0 < c_1 + c_2 < 4$$
 (III.17)

$$\left(\frac{c_1 + c_2}{2}\right) - 1 < w < 1 \tag{III.18}$$

Untuk nilai w diperoleh dengan perhitungan secara iteratif, dengan variasi w maximum dan w minimum (Shi dan Eberhart 1998).

$$w_{k+1} = w_{\max} - \left(\frac{w_{\max} - w_{\min}}{k_{\max}}\right)k$$
 (III.19)

Dimana w_{max} dan w_{min} merupakan *inertia weight* maximum dan minimum, serta k merupakan bilangan iterasi. Flowchart PSO secara lengakap ditunjukan pada Gambar III.4.

Gambar III. 4 Flowchart inversi non linier dengan PSO

Bab IV Hasil dan Pembahasan

IV.1 Data Pengamatan dan Koordinat Referensi

Data pengamatan yang digunakan dalam disertasi ini adalah data pengamatan GPS milik PVMBG di sekitar Gunung Sinabung yang terdiri dari stasiun SNBG (Sinabung), stasiun SKNL (Sukanalu), stasiun LKWR (Laukawar), stasiun GRKI (Gurukinayan), dan stasiun MRDG (Mardinding). Data lokal ini ditambah dengan satu stasiun GPS kontinyu milik BIG yaitu SAMP (Sampali). Periode data yang diolah adalah sejak bulan April 2011 sampai dengan bulan September 2016. Ada beberapa catatan informasi mengenai data yaitu stasiun SNBG mengalami perpindahan lokasi pada tanggal 11 Juni 2012 dan pada stasiun SKNL mengalami beberapa kali penggantian antena yaitu pada tanggal 19 Juni 2012, 20 Juni 2012, 3 Agustus 2012, dan 6 Agustus 2012. Hal ini nantinya harus diperhatikan dalam proses pengolahan data. Koordinat yang digunakan dalam melakukan plot time series deformasi permukaan adalah koordinat toposentrik. Koordinat toposentrik ini merupakan koordinat relatif terhadap titik referensi di atas permukaan bumi. Pada file .pos hasil pengolahan GAMIT/GLOBK 10.6, diperoleh koordinat toposentrik beserta koordinat geosentrik referensinya. Untuk koordinat geosentrik referensi yang digunakan dapat dilihat pada Tabel IV.1 dan ditunjukan pada Gambar IV.1.

Nama Stasiun	Lintang	Bujur	Elevasi (meter)
GRKI	3.1463638562	98.3940415603	1230.29648
LKWR	3.1916204445	98.3851551382	1496.43497
MRDG	3.1600191196	98.3667280919	1186.12912
SAMP	3.6216076487	98.7147172580	1.68352
SKNL	3.1757193989	98.4127966025	1442.57397
SNBG-A			
(sebelum pindah)	3.1410721553	98.4642909206	1248.57906
SNBG-B			
(setelah pindah)	3.1399057205	98.4572715202	1220.60456

Tabel IV.1 Koordinat Referensi

Gambar IV.1 Peta stasiun GPS lokal yang digunakan

IV.2 Time Series Deformasi Permukaan Relatif terhadap ITRF 2008

Dalam pengolahan data terlebih dahulu diperlukan analisis *time series* deformasi permukaan semua stasiun terhadap ITRF 2008. Stasiun IGS yang digunakan sebagai titik ikat dalam menganalisis *time series* deformasi permukaan terhadap ITRF 2008 sebanyak 10 stasiun yaitu DGAV, IISC, PBRI, CUSV, NTUS, PIMO, BAKO, XMIS, COCO dan DARW yang ditunjukan pada Gambar IV.2. Hal ini dilakukan untuk memperoleh deformasi permukaan global dan melihat kestabilan data pada tiap stasiun yang nantinya akan dipilih satu stasiun untuk dijadikan titik ikat relatif agar dapat mereduksi pengaruh tektonik, analisis *time series* deformasi permukaan stasiun GRKI, LKWR, MDRG, SAMP, SKNL dan SNBG terhadap ITRF 2008 ditunjukan pada Gambar IV.3 sampai Gambar IV.9.

Gambar IV.2 Peta stasiun IGS yang digunakan

Gambar IV.3 Plot stasiun SAMP terhadap ITRF 2008

Gambar IV.4 Plot stasiun LKWR terhadap ITRF 2008

Gambar IV.5 Plot stasiun SKNL terhadap ITRF 2008

Gambar IV.6 Plot stasiun GRKI terhadap ITRF 2008

Gambar IV.7 Plot stasiun MRDG terhadap ITRF 2008

Gambar IV.8 Plot stasiun SNBGA terhadap ITRF 2008

Gambar IV.9 Plot stasiun SNBGB terhadap ITRF 2008

Dasri hasil pengolahan data GPS Gunung Sinabung relatif pada ITRF 2008 dengan menggunakan GAMIT pada Gambar IV.2 hingga Gambar IV.9 menunjukan bahwa data yang memiliki kestabilan adalah data pada stasiun SAMP yang ditunjukan dari *smoothed* data yaitu data berwarna merah pada gambar. Karena data pada stasiun SAMP memiliki kestabilan dan kelengkapan data yang baik, masih terletak pada satu lempeng tektonik dan tidak terpengaruh oleh aktivitas lokal Gunung Sinabung, maka stasiun SAMP dijadikan titik ikat relatif untuk menghilangkan pengaruh tektonik yaitu *coseismik* dan *postseismik* pada stasiun sekitar Gunung Sinabung

sehingga diperoleh deformasi permukaan lokal dari Gunung Sinabung. Deformasi permukaan lokal dari Gunung Sinabung relatif terhadap stasiun SAMP ditunjukan pada Gambar IV.10 hingga Gambar IV.13.

Gambar IV.10 Plot stasiun LKWR relatif terhadap SAMP

Gambar IV.11 Plot stasiun SKNL relatif terhadap SAMP

Gambar IV.12 Plot stasiun GRKI relatif terhadap SAMP

Gambar IV.13 Plot stasiun MRDG relatif terhadap SAMP

Gambar IV.14 Plot stasiun SNBGA relatif terhadap SAMP

Gambar IV.15 Plot stasiun SNBGB relatif terhadap SAMP

VI.3 Periode Gunung Sinabung

Sebelum melakukan proses inversi untuk memperoleh informasi kedalaman dan perubahan volume sumber tekananan pada Gunung Sinabung maka dilakukan analisa terhadap pola kelurusan data *time series* lokal Gunung Sinabung untuk memperoleh periode Gunung Sinabung sesuai pola kelurusan yang ditunjukan pada Gambar IV.16

Gambar IV.16 Plot pembagian periode berdasarkan kelurusan time series

Berdasarkan analisa pola kelurusan relatif terhadap stasiun SAMP, diperoleh periode aktivitas Gunung Sinabung sebagai berikut:

- 1. Periode 1 (1 April 2011 22 Juli 2011).
- 2. Periode 2 (22 Juli 2011 4 Maret 2012).
- 3. Periode 3 (4 Maret 2012 1 April 2012).
- 4. Periode 4 (1 April 2012 31 Maret 2013).
- 5. Periode 5 (30 Agustus 2013 14 Oktober 2013).
- 6. Periode 6 (14 Oktober 2013 18 Maret 2014).
- 7. Periode 7 (18 Maret 2014 29 Juni 2014).
- 8. Periode 8 (28 September 2014 3 Juni 2015).
- 9. Periode 9 (3 Juni 2015 17 Agustus 2015).
- 10. Periode 10 (17 Agustus 2015 19 September 2015).
- 11. Periode 11 (19 September 2015 11 januari 2016).
- 12. Periode 12 (11 Januari 2016 31 Agustus 2016).

Setelah ditentukan periode aktivitas Gunung Sinabung berdasarkan pola kelurusan, maka dilakukan sampling data menggunakan *Theil Sen estimator* dan perhitungan standar deviasi dengan *median absolute deviation* (MAD) pada masing-masing periode yang ditunjukan pada Tabel IV.2.

р · 1	G		Koordinat		Peruba	ahan Posisi	(m)	Standar Deviasi			
Periode	Stasiun	х	у	Z	х	у	Z	х	у	z	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00531	0.00028	0.01615	0.01133	0.00883	0.03255	
	SKNL	434757.39000	351034.54000	1442.59190	-0.00735	0.00104	0.01626	0.01177	0.00878	0.03182	
	GRKI	432671.64000	347790.79000	1230.30610	-0.00496	0.00274	0.01270	0.01026	0.00760	0.02874	
1	SNBGA	440477.08000	347201.59000	1248.57910	-0.00659	0.00057	0.00783	0.00906	0.00731	0.02477	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00413	-0.00072	0.03726	0.00912	0.00754	0.02703	
	SKNL	434757.39000	351034.54000	1442.59190	-0.00003	0.00064	0.03238	0.01004	0.00728	0.02925	
	GRKI	432671.64000	347790.79000	1230.30610	-0.00500	-0.00053	0.02528	0.00868	0.00708	0.02702	
2	SNBGA	440477.08000	347201.59000	1248.57910	-0.00019	-0.00027	0.02590	0.00584	0.00453	0.02537	
	LKWR	431687.15000	352794.03000	1496.45190	0.01339	-0.00298	0.00134	0.01045	0.01076	0.02599	
	SKNL	434757.39000	351034.54000	1442.59190	-0.00246	-0.00452	-0.00182	0.00910	0.00888	0.02555	
	GRKI	432671.64000	347790.79000	1230.30610	-0.00136	-0.00244	0.01687	0.00806	0.00714	0.02018	
3	SNBGA	440477.08000	347201.59000	1248.57910	-0.00083	-0.00144	0.00601	0.00739	0.00479	0.01582	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00084	0.00095	0.05773	0.01288	0.01187	0.03613	
	SKNL	434757.39000	351034.54000	1442.59190	0.00117	-0.01421	0.06934	0.01210	0.01467	0.08200	
	GRKI	432671.64000	347790.79000	1230.30610	-0.00018	0.00195	0.03807	0.01091	0.00867	0.03550	
4	SNBGA	440477.08000	347201.59000	1248.57910	0.00410	0.00065	-0.00683	0.00674	0.00829	0.02069	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00117	-0.00242	0.00979	0.01091	0.01039	0.03928	
	SKNL	434757.39000	351034.54000	1442.59190	-0.00224	-0.00247	0.00280	0.01154	0.00782	0.04394	
	GRKI	432671.64000	347790.79000	1230.30610	-0.00100	-0.00176	0.01215	0.01019	0.00781	0.04543	
5	SNBGB	439697.06000	347073.05000	1220.60460	0.00573	-0.00655	0.01142	0.00686	0.00931	0.02054	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00117	-0.00242	0.00979	0.01091	0.01039	0.03928	
	SKNL	434757.39000	351034.54000	1442.59190	-0.00224	-0.00247	0.00280	0.01154	0.00782	0.04394	
	GRKI	432671.64000	347790.79000	1230.30610	-0.00100	-0.00176	0.01215	0.01019	0.00781	0.04543	
6	SNBGB	439697.06000	347073.05000	1220.60460	0.00573	-0.00655	0.01142	0.00686	0.00931	0.02054	
	LKWR	431687.15000	352794.03000	1496.45190	0.00888	0.00051	0.00400	0.01117	0.01033	0.03374	
	SKNL	434757.39000	351034.54000	1442.59190	0.00210	0.00244	-0.00463	0.01318	0.01148	0.03669	
7	SNBGB	439697.06000	347073.05000	1220.60460	-0.00403	0.00948	0.00987	0.01011	0.01245	0.02995	
	LKWR	431687.15000	352794.03000	1496.45190	0.01415	-0.00219	0.03220	0.02305	0.01719	0.05006	
	SKNL	434757.39000	351034.54000	1442.59190	0.00920	0.00176	0.04067	0.00929	0.01232	0.03748	
8	SNBGB	439697.06000	347073.05000	1220.60460	-0.00423	0.00277	0.03024	0.01613	0.01679	0.04930	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00223	-0.00052	0.01090	0.00863	0.01026	0.03177	
	SKNL	429637.51000	349302.07000	1186.16070	-0.00254	0.00367	0.00115	0.00856	0.00732	0.01879	
	MRDG	434757.39000	351034.54000	1442.59190	-0.00091	0.00074	0.00757	0.01191	0.01124	0.03405	
9	SNBGB	439697.06000	347073.05000	1220.60460	0.00350	0.01053	-0.00206	0.00972	0.01152	0.02685	
	LKWR	431687.15000	352794.03000	1496.45190	0.02019	-0.00295	0.03814	0.01023	0.01515	0.03290	
	SKNL	429637.51000	349302.07000	1186.16070	0.00008	-0.00245	0.00121	0.00564	0.01090	0.03153	
	MRDG	434757.39000	351034.54000	1442.59190	0.00289	-0.00371	0.00455	0.00856	0.01216	0.01790	
10	SNBGB	439697.06000	347073.05000	1220.60460	-0.00152	0.00175	0.01632	0.00884	0.01373	0.02796	
	LKWR	431687.15000	352794.03000	1496.45190	-0.00877	0.00187	0.02100	0.02841	0.02492	0.06108	
	SKNL	429637.51000	349302.07000	1186.16070	0.00610	-0.00031	0.00557	0.00983	0.01076	0.03483	
	MRDG	434757.39000	351034.54000	1442.59190	0.00180	-0.00211	0.01264	0.00445	0.01023	0.03647	
11	SNBGB	439697.06000	347073.05000	1220.60460	0.00089	0.00670	-0.00085	0.01162	0.01151	0.03140	
	LKWR	431687.15000	352794.03000	1496.45190	0.00203	0.00178	0.03424	0.01211	0.00940	0.03197	
	MRDG	429637.51000	349302.07000	1186.16070	-0.00075	0.00582	0.05210	0.00978	0.00876	0.03131	
12	SNBGB	439697.06000	347073.05000	1220.60460	0.00016	0.00841	0.03749	0.01277	0.01121	0.03474	

Tabel IV.2 Perubahan Posisi Setiap Periode

IV.4 Pemodelan Kedepan

Pemodelan kedepan atau forward modeling perlu dilakukan untuk memperoleh data sintetik, data sintetik ini nantinya akan digunakan untuk menguji inversi. Dengan parameter sumber yang digunakan untuk memperoleh data sintetik yaitu kedalaman sumber tekanan 25000 meter, jari-jari 1000 meter, dan posisi kedalaman sumber tekanan berada pada bawah Gunung Sinabung. Hasil hasil forward modeling

deformasi permukaan dengan model Mogi dan McTigue ditunjukan pada Gambar IV.17.

Gambar IV.17 Pemodelan kedepan deformasi permukaan menggunakan Model (a) Mogi dan (b) McTigue

Hasil dari forward modeling dengan menggunakan model Mogi dan McTigue adalah sebagai berikut:

Mada	Ctosium		Peru	ubahan Posisi	(m)	S	tandar Deviasi			
wode	Juanun	x	У	z	х	У	Z	x	У	Z
	SKNL	434757.3900000	351034.5400000	1442.5919000	0.0005732	0.0004030	0.0106572	0.0000287	0.0000201	0.0005329
	SNBGA	440477.0800000	347201.5900000	1248.5791000	0.0026182	-0.0010386	0.0096227	0.0001309	-0.0000519	0.0004811
Mogi	LKWR	431687.1500000	352794.0300000	1496.4519000	-0.0006500	0.0010884	0.0104513	-0.0000325	0.0000544	0.0005226
INIOSI	GRKI	432671.6400000	347790.7900000	1230.3061000	-0.0002724	-0.0009215	0.0107719	-0.0000136	-0.0000461	0.0005386
	MRDG	429637.5100000	349302.0700000	1186.1607000	-0.0014976	-0.0002967	0.0106061	-0.0000749	-0.0000148	0.0005303
	SNBGB	439697.0600000	347073.0500000	1220.6046000	0.0023859	-0.0011107	0.0098335	0.0001193	-0.0000555	0.0004917
	SKNL	434757.3900000	351034.5400000	1442.5919000	0.0005733	0.0004030	0.0106578	0.0000287	0.0000201	0.0005329
	SNBGA	440477.0800000	347201.5900000	1248.5791000	0.0026184	-0.0010387	0.0096232	0.0001309	-0.0000519	0.0004811
McTiguo	LKWR	431687.1500000	352794.0300000	1496.4519000	-0.0006500	0.0010885	0.0104519	-0.0000325	0.0000544	0.0005226
IVIC LIGUE	GRKI	432671.6400000	347790.7900000	1230.3061000	-0.0002725	-0.0009215	0.0107725	-0.0000136	-0.0000461	0.0005386
	MRDG	429637.5100000	349302.0700000	1186.1607000	-0.0014977	-0.0002967	0.0106067	-0.0000749	-0.0000148	0.0005303
	SNBGB	439697.0600000	347073.0500000	1220.6046000	0.0023861	-0.0011108	0.0098341	0.0001193	-0.0000555	0.0004917

Tabel IV.3 Data Hasil Sintetik dengan menggunakan model Mogi dan McTigue

IV.5 Pemodelan Inversi Dengan Data Sintetik

Sebelum dilakukan inversi pada data deformasi permukaan, maka perlu dilakukan validasi terhadap program inversi yang telah dibuat. Validasi dilakukan dengan memasukan parameter dan data yang diperoleh dari pemodelan kedepan. Hasil inversi terhadap data sintetik dengan menggunakan model Mogi dan McTigue ditunjukan pada Gambar IV.17.

Gambar IV.18 Inversi data sintetik dengan (a) Model Mogi menggunakan PSO, (b) Model McTigue menggunakan PSO, (c) Model Mogi menggunakan VFSA, (d) Model McTigue menggunakan VFSA.

Pada hasil inversi menunjukan misfit yang sangat baik yaitu 0,00, berdasarkan hasil tersebut maka program inversi dapat digunakan untuk melakukan inversi terhadap data lapangan. Grafik misfit pada inversi menggunakan data sintetik secara detail adalah sebagai berikut:

Gambar IV.19 Misfit data Sintetik dengan (a) Model Mogi menggunakan PSO, (b) Model McTigue menggunakan PSO, (c) Model Mogi menggunakan VFSA, (d) Model McTigue menggunakan VFSA.

IV.6 Pemodelan sumber tekanan

Dalam inversi digunakan skema Very Fast Simulated Annealing (VFSA) dan Particle Swarn Optimation (PSO) untuk masing-masing periode dengan menggunakan 2 model yaitu model Mogi, model McTigue, kemudian hasil inversi tersebut dibandingkan dan dipilih mifit terkecil sebagai model terpilih, dengan hasil pemodelan ditunjukan pada Gambar IV.20 hingga Gambar IV.30 a. Pemodelan inversi pada periode 1

Hasil inversi pada periode 1 April 2011 – 22 Juli 2011) ditunjukan pada Gambar IV.20.

Gambar IV.20 Hasil inversi pada periode 1 (a) Vektor deformasi permukaan pada periode1. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil inversi pada paride 1 ditunjukan pada Tabel IV.4

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m^3)
Mogi dengan VFSA	0.07002	10.0600	559.5357	0.09419	25798.2230	449990.29	345581.77	51810513.25
McTigue dengan VFSA	0.02013	10.0374	1079.455	0.09439	32905.3470	469884.97	342215.12	372794505.23
Mogi dengan PSO	0.02967	10.0593	669.5714	0.06256	27826.6160	450000.00	346001.89	58968083.71
McTigue dengan PSO	0.02960	10.0593	631.1901	0.04234	27826.3470	450000.00	346001.90	33431898.32

Tabel IV.4 Parameter hasil inversi pada periode 1

Hasil inversi pada periode 1 menunjukan misfit terkecil diperoleh dari inversi model McTigue dengan skema VFSA. Sumber tekanan hasil inversi berada pada kedalaman 32 km dengan perubahan volume sekitar $\pm 372,79 \times 10^6 m^3$ yang ditunjukan pada Gambar IV.21. Hal ini memungkinkan bahwa sumber tekanan hasil inversi bukan merupakan kantong magma tapi merupakan sumber tekanan yang lain yang dapat berupa sumber tektonik ataupun partial melting yang memerlukan studi lebih lanjut. Selain itu pada periode 1 Gunung Sinabung diturunkan dari awas ke waspada setelah erupsi yang berulang-ulang dari erupsinya yang pertama pada tanggal 27 Agustus 2010 hingga 3 september 2010 (Gunawan, 2017), kondisi ini juga memperkuat bahwa deformasi permukaan permukaan Gunung Sinabung pada periode 1 bukan pengaruh dari lokal gunung sinabung.

Gambar IV.21 Kedalaman sumber tekanan pada periode 1

b. Pemodelan inversi pada periode 2

Hasil inversi pada periode 2 (22 Juli 2011 – 4 Maret 2012) ditunjukkan pada Gambar IV.22.

Gambar IV.22 Hasil inversi pada periode 2 (a) Vektor deformasi permukaan pada periode 2. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO. Parameter hasil inversi pada periode 2 ditunjukkan pada Tabel IV.5.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V (m^3)
Mogi dengan VFSA	0.21599	10.8720	200.1169	0.01222	1288.7646	420000.18	347997.37	307505.03
McTigue dengan VFSA	0.09210	10.8760	221.0227	0.03583	959.1926	435999.99	349289.33	1214750.03
Mogi dengan PSO	0.05644	10.8718	236.1255	0.02304	1300.0000	428500.00	348148.75	952446.95
McTigue dengan PSO	0.05646	10.8747	252.2231	0.03342	981.6913	435000.00	349806.04	1683800.84

Tabel IV.5 Pameter hasil inversi pada periode 2

Hasil inversi pada periode 2 menunjukan misfit terkecil diperoleh dari inversi pada model Mogi dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 1.3 km dengan perubahan volume cukup besar sekitar $\pm 0,95 \times 10^6 m^3$ pada sektor timur laut dari Gunung Sinabung yang ditunjukan pada Gambaar IV.23. Dengan kedalaman yang cukup dangkal maka sumber tekanan pada periode 2 ini adalah kantong magma dari Gunung Sinabung.

Gambar IV.23 Kedalaman sumber tekanan pada periode 2

c. Pemodelan inversi pada periode 3

Hasil inversi pada periode 3 (4 Maret 2012 – 1 April 2012) ditunjukan pada Gambar IV.24.

Gambar IV.24 Hasil inversi pada periode 3 (a) Vektor deformasi permukaan pada periode 3. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO. Parameter hasil inversi pada periode 3 ditunjukkan pada Tabel IV.6.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m^3)
Mogi dengan VFSA	0.15368	10.3074	310.5031	0.01552	563.6781	427288.66	354925.07	1458878.57
McTigue dengan VFSA	0.16037	10.3207	248.1434	0.02587	1136.8877	426976.52	353925.32	1241177.80
Mogi dengan P50	0.11661	10.2332	280.0001	0.03047	1299.9996	430394.49	353098.16	2100138.43
McTigue dengan PSCE	0.11783	10.2357	232.335	0.08255	1031.0020	430196.95	353155.07	3250802.93

Tabel IV.6 Pameter hasil inversi pada periode 3

Hasil inversi pada periode 3 menunjukan misfit terkecil diperoleh dari inversi pada model Mogi dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 1.29 km dengan perubahan volume cukup besar yaitu sekitar $\pm 0,21 \times 10^6 m^3$ pada sektor barat laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.25. Dengan kedalaman yang cukup dangkal maka sumber tekanan pada periode 3 ini memungkinkan adanya katung mangma dalam yang sejajar dengan periode 2 dengan jarak kantong magma dari periode 3 ke periode 2 adalah 1800 m dari arah barat laut menuju timur laut.

Gambar IV.25 Kedalaman sumber tekanan pada periode 3

d. Pemodelan inversi pada periode 4

Hasil inversi pada periode 4 (1 April 2012 – 31 Maret 2013) ditunjukan pada Gambar IV.26.

Gambar IV.26 Hasil inversi pada periode 4 (a) Vektor deformasi permukaan pada periode 4. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO. Parameter hasil inversi pada periode 4 ditunjukkan pada Tabel IV.7.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m^3)
Mogi dengan VFSA	0.36470	10.7294	1267.326	0.01341	33391.0210	430366.19	351607.82	85708475.17
McTigue dengan VFSA	0.36458	10.7292	664.9055	0.06033	27067.5910	430716.63	351194.38	55685582.78
Mogi dengan PS0	0.36453	10.7291	704.1171	0.02104	29377.4320	430654.98	351210.25	23062690.24
McTigue dengan PS0	0.26584	10.5317	369.6323	0.05940	495.0204	431704.83	352780.70	9419457.86

Tabel IV.7 Parameter hasil inversi pada periode 4

Hasil inversi pada periode 4 menunjukan misfit terkecil diperoleh dari inversi pada model McTigue dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 0,59 km dengan perubahan volume sekitar $\pm 9,41 \times 10^6 m^3$ pada sektor barat laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.28. Dari perubahan volume tersebut diketahui bahwa ada inflasi dari tubuh Gunung Sinabung. Dengan kedalaman kantong magma yang lebih dangkal dari periode 3 ini memungkinkan adanya kantong mangma yang lebih dagkal dan adanya migrasi magma dari periode 3 ke periode 4 dengan lokasi diatas kantong magma pada periode 3.

Gambar IV.27 Kedalaman sumber tekanan pada periode 4

e. Pemodelan inversi pada periode 5

Hasil inversi pada periode 5(30 Agustus 2013 – 14 Oktober 2013) ditunjukan pada Gambar IV.28.

Gambar IV.28 Hasil inversi pada periode 5 (a) Vektor deformasi permukaan pada periode 5. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil inversi pada periode 5 ditunjukkan pada Tabel IV.8.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m ³)
Mogi dengan VF5A	0.03795	10.0759	538.0809	0.04304	17203.1210	433864.80	354245.37	21054488.17
McTigue dengan VFSA	0.03778	10.0756	433.2064	0.08125	16949.4680	433892.00	353871.24	20741382.48
Mogi dengan PSO	0.03401	10.0755	469.4259	0.03401	16681.5920	433924.45	353821.02	11046567.79
McTigue dengan PSO	0.03777	10.0755	504.6009	0.06297	16683.4200	433924.43	353821.12	25403284.16

Tabel IV.8 Parameter hasil inversi pada periode 5

Hasil inversi pada periode 5 menunjukan misfit terkecil diperoleh dari inversi pada model McTigue dengan skema VFSA. Sumber tekanan hasil inversi berada pada kedalaman 16,949 km dengan perubahan volume yang cukup besar sekitar $\pm 20,74 \times 10^6 m^3$ pada sektor tenggara dari Gunung Sinabung yang ditunjukan pada Gambar IV.29. Dari hasil yang diperoleh kedalaman sumber tekanan pada periode 5 merupakan temuan adanya kantong magma dalam dan perubahan volume yang besar menunjukan adanya produksi magma yang besar pada kantong magma periode 5.

Gambar IV.29 Kedalaman sumber tekanan pada periode 5

f. Pemodelan inversi pada periode 6

Hasil inversi pada periode 6 (14 oktober 2013 – 18 Maret 2014) ditunjukan pada gambar IV.30.

Gambar IV.30 Hasil inversi pada periode 6 (a) Vektor deformasi permukaan pada periode 6. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil inversi pada periode 6 ditunjukkan pada Tabel IV.9.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m ³)
Mogi dengan VFSA	0.30827	10.5486	247.679	0.06526	2895.1240	440613.59	355718.26	3113466.67
McTigue dengan VFSA	0.21755	10.4351	309.0618	0.01639	402.3770	439632.34	352937.21	1519304.13
Mogi dengan PS0	0.14792	10.2959	163.3167	0.05043	1332.2287	438075.47	351155.07	1258999.40
McTigue dengan PSO	0.14930	10.2986	138.2639	0.10000	936.6134	438098.96	351131.25	829957.89

Tabel IV.9 Parameter hasil inversi pada periode 6

Hasil inversi pada periode 6 menunjukan misfit terkecil diperoleh dari inversi pada model Mogi dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 1,33 km dengan perubahan volume sekitar $\pm 1,25 \times 10^6 m^3$ pada sektor timur laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.31. Dari hasil yang diperoleh, kedalaman sumber tekanan pada periode 6 lokasinya yang bedekatan dengan sumber tekanan berupa kantong magma pada periode 2. Dari periode 5 ke periode 6 menujukan adanya suplai magma secara terus menerus dari kantong magma dalam yang menyebabkan inflasi pada tubuh Gunung Sinabung yang ditunjukan dengan peningkatan aktivitas Gunung Sinabung yaitu mulai Gunung Sinabung mulai erupsi kembali pada tanggal 15 September 2013 berupa letusan phreatomagmatic kemudian disusul dengan beberapa letusan selanjutnya yang lebih kuat serta mulai diikuti oleh aliran piroklastik mulai tanggal 1 november 2013 hingga Desember 2013 dan terbentuknya kubah lava pada Gunung Sinabung disertai dengan runtuhnya kubah lava secara terus menenus dan didominasi oleh aliran lava hingga Januari 2014. Pada period 6 juga terjadi peningkatan jumlah gempa vulkanik dangkal yang ditunjukan pada Gambar IV.32, peningkatkan jumlah gempa vulkanik dangkal ini menunjukan bahwa adanya aliran magma dari kantong magma dalam 16,949 km pada periode 5 ke kantong magma pada periode 6 yaitu pada kedalaman 1,33 km.

Gambar IV.31 Kedalaman sumber tekanan pada periode 6

Gambar IV.32 Kegempaan harian Gunung Sinabung periode 6

g. Pemodelan inversi pada periode 7

Hasil inversi pada periode 7 (18 Maret 2014 -29 Juni 2014) ditunjukan pada Gambar IV.33.

Gambar IV.33 Hasil inversi pada periode 7 (a) Vektor deformasi permukaan pada periode 7. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil inversi pada periode 7 ditunjukkan pada Tabel IV.10

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m ³)
Mogi dengan VFSA	0.07622	10.1524	574.1205	0.00570	5811.8359	436914.97	353498.46	3386988.78
McTigue dengan VFSA	0.07121	10.1424	212.5834	0.08062	4375.5593	437312.02	353343.77	2431982.74
Mogi dengan PSO	0.07064	10.1413	308.5468	0.01365	3871.2803	437094.70	352983.65	1258999.40
McTigue dengan PSO	0.14930	10.2986	215.3509	0.03618	3873.0500	437094.76	352983.57	1134587.47

Tabel IV.10 Data pameter hasil inversi pada periode 7

Hasil inversi pada periode 7 menunjukan misfit terkecil diperoleh dari inversi pada model Mogi dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 3,871 km dengan perubahan volume sekitar $\pm 1,25 \times 10^6 m^3$ pada sektor timur laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.34. Sumber tekanan ini adalah kantong magma yang terletak diantara kantong magma yang lebih dangkal pada kedalaman 1,3km dan kantong magma dalam yang diperoleh pada periode 5 yaitu 16,95 km.

Gambar IV.34 Kedalaman sumber tekanan pada periode 7

Adanya kantong magma pada kedalaman 3,87 km memungkinkan adanya suplai magma yang lebih cepat ke kantong magma dangkal dan kepermukaan tubuh gunungapi yang ditandai dengan meningkatnya aktivitas dari Gunung Sinabung, salah satunya adanya peningkatan jumlah kegempaan yang terlihat pada Gambar IV.35.

Gambar IV.35 Kegempaan harian Gunung Sinabung periode 7

h. Pemodelan inversipada periode 8

Hasil inversi pada periode 8 (28 September 2014 – 3 Juni 2015) ditunjukan pada Gambar IV.36.

Jambar IV.36 Hasil inversi pada periode 8 (a) Vektor deformasi permukaan pada periode 8. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO

Parameter hasil inversi pada periode 8 ditunjukan pada tabel IV.11.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m^3)
Mogi dengan VFSA	0.29846	10.5969	245.2676	0.02281	1046.9329	439593.17	352757.47	1056757.19
McTigue dengan VFSA	0.26539	1059692	245.2676	0.02281	1046.9329	439593.17	352757.47	1056757.19
Mogi dengan PSO	0.25252	1047056	116.5981	0.10000	1383.4019	438139.38	351868.99	497741.24
McTigue dengan PS0	0.25393	10.505	504.344	0.09791	995.4560	463000.00	352080.57	39440033.42

Tabel IV.11 Data pameter hasil inversi pada periode 8

Hasil inversi pada periode 8 menunjukan misfit terkecil diperoleh dari inversi pada model Mogi dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 1,383 km dengan perubahan volume sekitar $\pm 0,49 \times 10^6 m^3$ pada sektor timur laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.37. Sumber tekanan ini merupakan kantong magma dangkal dengan lokasi kedalaman kantong magma serupa dengan kantong magma pada periode 6 dan periode 2. Nilai volume kantong magma pada periode 8 menunjukan ada aktivitas naiknya magma ke tubuh Gunung Sinabung yang ditandai dengan cepat terbentuknya kubah lava dan cepat runtuh kembali secara terus menerus serta menghasilkan aliran piroklastik yang lebih luas dari periode 7 yaitu sejauh 5km kearah selatan timur laut Gunung Sinabung.

Gambar IV.37 Kedalaman sumber tekanan pada periode 8

i. Pemodelan inversi pada periode 9

Hasil inversi pada periode 9 (3 Juni 2015-17 Agustus 2015) ditunjukan pada gambar IV.38.

Gambar IV.38 Hasil inversi pada periode 9 (a) Vekto deformasi permukaan pada periode 9. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil inversi pada periode 9 ditunjukan pada Tabel IV.12.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	v(m)	delta V(m ³)
Mogi dengan VESA	0.12529	10.0906	291 1756	0.06394	-23 4482	439817.46	335478 69	4956409 92
McTigue dengan VESA	0.02665	10.0533	201 3875	0.07213	622,9754	438124 58	340849.63	1849879.21
Mogi dengan PSO	0.02003	10.0333	152 6703	0.09597	16681 5920	438211.92	3/2/89 67	1072330.06
McTigue dengan PSO	0.02079	10.0416	132.0703	0.00829	972 2921	438582.23	3/3676.08	1967729.57

Tabel IV.12 Data pameter hasil inversi pada periode 9

Hasil inversi pada periode 9 menunjukan misfit terkecil diperoleh dari inversi pada model McTigue dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 0,972 km dengan perubahan volume yang lebih besar dari periode 8 yaitu sekitar $\pm 1,96 \times 10^6 m^3$ pada sektor tenggara dari Gunung Sinabung yang ditunjukan pada Gambar IV.39. Pada periode ini mununjukan bahwa ada suplai magma secara terus menerus yang menyebakan bertambahnya volume magma dagkal yang cukup besar.

Gambar IV.39 Kedalaman sumber tekanan pada periode 9

j. Pemodelan inversi pada periode 10
Hasil inversi pada periode 10 (17 Agustus 2015 – 19 September 2015)
ditunjukan pada Gambar IV. 40.

Gambar IV.40 Hasil inversi pada periode 10 (a) Vektor deformasi permukaan pada periode 10. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil pemodelan pada periode 10 ditunjukan pada Tabel IV.13.

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m ³)
Mogi dengan VFSA	0.39705	10.6461	236.6265	0.09182	1495.4190	424869.84	358233.04	3819945.68
McTigue dengan VFSA	0.24348	10.4870	201.212	0.06592	551.4726	427959.70	354874.73	1686197.40
Mogi dengan PSO	0.05881	10.1176	324.9802	0.00222	1157.3503	431507.36	352820.57	239250.65
McTigue dengan PSO	0.05880	10.1178	200.005	0.00774	1075.2258	431464.02	352826.79	194443.35

Tabel IV.13 Data pameter hasil inversi pada periode 10

Hasil inversi pada periode 10 menunjukan misfit terkecil diperoleh dari inversi pada model McTigue dengan skema PSO. Sumber tekanan hasil inversi berada pada kedalaman 1,075 km dengan perubahan volume sekitar $\pm 0,19 \times 10^6 m^3$

pada sektor barat laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.41. Sumber tekanan pada periode ini merupakan kantong magma dangkal karena posisi dan kedalamannya yang memungkinkan erupsi pada periode 10 bersumber dari kantong magma pada periode 10

Gambar IV.41 Kedalaman sumber tekanan pada periode 10

k. Pemodelan inversi pada periode 11

Hasil inversi pada periode 11 (19 september 2015 – 11 Januari 2016) ditunjukan pada Gambar IV.42.

Gambar IV.42 Hasil inversi pada periode 11 (a) Vektor deformasi permukaan pada periode 11. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil inversi pada periode 11 sebagai berikut:

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V(m^3)
Mogi dengan VFSA	0.07002	10.0600	559.5357	0.09419	25798.2230	449990.29	345581.77	51810513.25
McTigue dengan VFSA	0.02013	10.0374	1079.455	0.09439	32905.3470	469884.97	342215.12	372794505.23
Mogi dengan PSO	0.02967	10.0593	669.5714	0.06256	27826.6160	450000.00	346001.89	58968083.71
McTigue dengan PSO	0.02960	10.0593	631.1901	0.04234	27826.3470	450000.00	346001.90	33431898.32

Tabel IV.14 Data pameter hasil inversi pada periode 11

Hasil inversi pada periode 11 diperoleh misfit terkecil dari inversi pada model McTigue dengan skema VFSA. Sumber tekanan hasil inversi berada pada kedalaman 32,95 km dengan perubahan volume yang sangat besar sekitar $\pm 372,29 \times 10^6 m^3$ pada sektor timur laut dari Gunung Sinabung yang ditunjukan pada Gambar IV.43. Sumber tekanan ini menyerupai sumber tekanan pada periode 1 yang dalam studi ini disimpulkan bahwa sumber tekanan ini terlalu jauh dan dalam untuk sebuah kantong magma Gunung Sinabung, jadi sumber tekanan ini dimungkinkan bukan merupakan suatu kantong magma atau sumber lokal namun ada kemungkinan merupakan sumber tektonik yang perlu dilakukan studi lebih lanjut.

Gambar IV.43 Kedalaman sumber tekanan pada periode 11

 Pemodelan inversi pada periode 12 Hasil inversi pada periode 12 (11 Januari 2016 - 31 Agustus 2016) ditunujukan pada Gambar IV.44.

Gambar IV.44 Hasil inversi pada periode 12 (a) Vektor deformasi permukaan pada periode 12. (b) Inversi menggunakan model Mogi dengan skema VFSA. (c) Inversi menggunakan model McTigue dengan skema VFSA. (d) Inversi menggunakan model Mogi dengan skema PSO. (e) Inversi menggunakan model McTigue dengan skema PSO.

Parameter hasil pemodelan pada periode 12 sebagai berikut:

Model	misfit	AIC	a(m)	delta P/G	d(m)	x(m)	y(m)	delta V (m^3)
Mogi dengan VFSA	0.68173	11.3235	351.0867	-0.00124	502.8417	439342.66	349811.79	-168497.88
McTigue dengan VFSA	0.52991	11.2177	385.627	0.00035	1029.5407	439793.82	349801.45	63023.13
Mogi dengan PS0	0.60990	11.2198	335.6848	-0.10000	1164.3152	441460.65	373000.00	-11877490.12
McTigue dengan PS0	0.57839	11.1888	373.5143	-0.10000	614.9723	434027.81	346916.65	-16362558.37

Tabel IV.15 Data pameter hasil inversi pada periode 12

Hasil inversi pada periode 12 menunjukan misfit terkecil diperoleh dari inversi pada model McTigue dengan skema VFSA, namun hasil inversi pada periode 12 tidak digunakan dalam analisis hasil inversi dikarenakan nilai misfit jauh lebih besar dibandingkan dengan misfit pada periode yang lain serta terlihat dari hasil AIC yang nilainya 11 sedangkan nilai AIC pada periode yang lain berda pada nilai 10, hal ini dimungkinkan karena minimnya data pada periode 12.

Dari hasil inversi data deformasi permukaan dengan menggunakan GPS pada Gunung Sinabung menggunakan metode VFSA dan PSO menunjukan hasil yang cukup baik dari segi misfit maupun dari segi respon model. Model yang dihasilkan dari proses inversi cukup merekonstruksi model lapangan secara fisis realitis. Dari posisi kedalaman sumber tekanan berupa kantong magma pada Gunung Sinabung secara keseluruhan dapat dikelompokan menjadi tiga bagian yaitu kantong magma dalam pada kedalaman 16,949 km, kantong magma menengah pada kedalaman 3,87 km dan kantong magma dangkal pada kedalaman antara 0,5km sampai 1,3 km yang terbagi menjadi 2 sektor yaitu sektor timur laut dan sektor barat laut yang terdiri dari beberapa kantong magma yang ditunjukan secara vertikal dan horizontal pada Gambar IV.45 dan Gambar IV.46.

Gambar IV.45 Kedalaman sumber tekanan Gunung Sinabung hasil inversi

Gambar IV.46 Posisi sumber tekanan Gunung Sinabung hasil inversi

Hasil inversi terpilih berdasarkan misfit data sesuai dengan hasil relokasi hiposenter kegempaan tektonik oleh Indrastuti (2017) yang ditunjukan pada Gambar IV.47. Berdasarkan dari inversi sumber tekanan yang dielaborasikan dengan relokasi kegenpaan volkano tektonik maka diketahui volcano tektonik berkaitan dengan kantong magma Gunung Sinabung sekaligus memperkuat bahwa hasil inversi sesuai dengan kondisi Gunung Sinabung.

Gambar IV.47 Distribusi hiposenter hasil relokasi gempa-gempa volkanotektonik (Indrastuti, 2017)

Bab V Kesimpulan dan Saran

VI.1. Kesimpulan

Berdasarkan hasil analisis terhadap *time series* deformasi permukaan, inversi data serta analisis dengan mengelaborasikan terhadap data kegempaan, geologi dan penelitian terdahulu diperoleh kesimpulan sebagai berikut:

- Pengolahan data GPS dengan perangkat lunak GAMIT/GLOBK 10.6 mampu menghasilkan data deformasi dengan tingkat akurasi yang relatif baik yaitu dengan standar deviasi yang kecil.
- Dengan mengikatkan data pengamatan GPS pada komponen horisontal relatif terhadap stasiun SAMP dapat mereduksi pengaruh gempa tektonik yang terjadi pada 11 April 2012 serta pengaruh kegempaan yang lain.
- 3. Dari hasil inversi data deformasi permukaan dengan menggunakan GPS pada Gunung Sinabung menggunakan model Mogi dan McTigue dengan skema VFSA dan PSO menunjukan hasil yang cukup baik dari segi misfit maupun dari segi respon model sehingga cukup merekonstruksi model lapangan secara fisis realitis.
- 4. Kedalaman sumber tekanan hasil inversi menunjukkan adanya kemungkinan bahwa Gunung Sinabung memiliki kantong magma yang terkonsentrasi pada 3 lokasi yaitu kantong magma dangkal pada kedalaman sekitar 0,5-1,3 km yang terdiri dari kantong-kantong magma yang tersebar pada sektor timur laut dan barat laut dari Gunung Sinabung, kantong magma menengah antara dangkal dan dalam pada kedalaman 3,8km dan kantong magma dalam pada kedalaman 16,9km.
- 5. Perubahan volume sumber tekanan berkorelasi dengan kedalaman sumber tekanan, yaitu pada kantong magma dalam perubahan volume sumber tekanan mencapai $\pm 11,04 \times 10^6 m^3$, pada kantong magma sedang mencapai $\pm 1,25 \times 10^6 m^3$ dan pada kantong magma dangkal pada $\pm 0,21 \times 10^6 m^3$.

6. Berdasrkan hasil inversi pada periode 9 diperoleh kedalaman kantong magma dangkal namun nilai perubahan volume cukup besar yaitu $\pm 1,96 \times 10^6 m^3$, perubahan volume yang cukup besar ini dimungkinkan dari adanya akumulasi magma dari kantong magma dangkal yang berada dibawah kantong magma pada periode 9 yang ditandai juga dengan meningkatnya aktivitas Gunung Sinabung, serta posisi secara horisontal yang cukup jauh dari pusat gunung Sinabung yaitu sekitar 4 km pada sektor tenggara dari Gunung Sinabung.

VI.2. Saran

- Kerusakan stasiun GRKI sejak awal 2014 menyebabkan stasiun GPS lokal di sekitar Gunung Sinabung hanya tersisa 3 termasuk stasiun SNBG, sedangkan stasiun MRDG baru beroperasi sejak bulan Juli 2015. Untuk mendapatkan hasil analisis yang lebih baik, diperlukan waktu yang lebih lama di masa yang akan datang agar stasiun MRDG memiliki cukup banyak data.
- Dapat dipertimbangkan untuk menambah titik GPS permanen di sekitar Gunung Sinabung untuk menambah kualitas analisis data yang dihasilkan ataupun sebagai alternatif titik ikat lokal selain SAMP dan SNBG.
- 3. Untuk penelitian lebih lanjut dapat dikembangkan dengan model yang lain yaitu model pipa tertutup dan pipa terbuka dan dapat pula dicoba dengan skema inversi yang lain.

DAFTAR PUSTAKA

- Abidin, H. Z., Suganda, O. K., Kusuma, M. A., Meilano, I., Setyadji, B., Muhardi, D., Sukhyar, R., Kahar, J. dan Tanaka, T. (1997): *Monitoring the Deformation of Guntur Volcano (West Java, Indonesia) Using GPS Survey Method: Status and Future Plan*, Proceedings of International Symposium on Natural Disaster Prediction and Mitigation, Kyoto, December 1-5, pp. 81-88, 1997.
- Abidin, H. Z., Andreas, H., Gamal, M., Hendrasto, M., Suganda, O. K., Purbawinata, M.A., Meilano, I., dan Kimata, F. (2004): *The Deformation of Bromo Volcano (Indonesia) as Detected by GPS Surveys Method*, Journal of Global Positioning Systems (2004) Vol. 3, No. 1-2: 16-24
- Abidin, H. Z. (2006): *The Use of GPS Surveys Method for Natural Hazard Mitigation in Indonesia*, Proceedings of the International Symposium and Exhibition on Geoinformation 2006, Kuala Lumpur, Malaysia, 19-21 September.
- Alam, M. N. (2016): Particle Swarm Optimization: Algorithm and its Codes in MATLAB, DOI:10.13140/RG.2.1,4985.3206
- Bonaccorso, A., dan Paul M. D. (1999): Models of ground deformation from vertical volcanic conduits with application to eruptions of Mount St. Hellens and Mount Ethna, Journal of Geophysical Research, Vol. 104, No. B5, Pages 10,531- 10,542, May 10.
- Diament, M., Harjono, H., Karta, K., Deplus, C., Dahrin, D., Zen, M. T., Gerard, M., Lassal, O., Martin, A. dan Malod, J. (1992). *Mentawai Fault zone off Sumatra-A new key to the geodynamics of westerm Indoneia*, Geology, v.20, 259-262.
- Dvorak, J. J. (1993): Variations in Magma Supply Rate at Kilaulea Volcano, Hawai, Journal of Geophysical Research Vol. 98 No. B12, pages 255-268.
- Dvorak, J. J and D. Dzurisin. (1977): Volcano Geodesy: The Search for magma Resevoir and the Formation of Eruptive Vents, Review of geophysics, vol.35, No.3, August, pp. 343-384.
- Estey, L., dan Wier, S. (2014) *Teqc Tutorial: Basics of Teqc Use and Teqc Products*, UNAVCO Inc.
- Fialko, Y., Khazan, Yakov, Simsom, M. (2001): Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy, Geophys. J. Int. 146, 181–190.
- Gunawan, H., Surono., Budianto, A., Kristianto, Prambada, O., McCausland, W., Palister, J., Igucgi, M. (2017): Overview of the Eruption of Sinabung Eruption, 2010 and 2013-preent and detail of the 2013 phreatomagmatic phase, Accepted Manuskrip Journal of Vulcanology and Geothermal Research.
- Grandis, H. (2009): *Pengantar Pemodelan Inversi Geofisika*, Himpunan Ahli Geologi Indonesia (HAGI).
- Hattherton, T and Dickinson, W. R. (1969): *The relationship between andesitic volcanism and seismicity in Indonesia, the Lesser Antiles and other island arcs,* Journal of Geophysical Research. V.74. p.5301-5310.
- Hendrasto, M. (2012): *Evaluation of Volcanic Activity at Sinabung Volcano, After More Than 400 Years of Quit,* Journal of Disaster Research vol. 7 No. 5.

- Herring, T. A., King R. W., Floyd, M. A., dan McClusky, S. C. (2015): Introduction to GAMIT/GLOBK Release 10.6, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology.
- Hotta, K., Iguchi, M., Ohkura, T., hendrasto, T., Gunawan, H., Rosadi, U., dan Kriswanti, E. (2017): Process of magma intrusion and effusion at Sinabung Volcano, Indonessia, during the eruptive activity from 2013 to 2016, as revealed from continou GNSS observation data, Accepted Manusscript Journal of Vulcanology and Geothermal Research.
- Indrastuti, N. (2015): *Studi Kegempaan dan Seismik Tomografi Gunung Sinabung*, Tesis Magister, Prodi Sains Kebumian, Sekolah Pasca Sarjana, Institut Teknologi Bandung.
- Indrastuti, N., Nugraha, A, D., Gunawan, H., McCausland, W. (2017): 3-D Seismic Tomographic study of Sinabung Volcano, Northern Sumatra, Indonesia, during the inter-eruptive period October 2010 - July 2013, Journal of Volcanology and Geothermal Research.
- Ingber, L., dan Rosen, B. (1992): Genetic algorithms and very fast simulated reannealing: a comparison, Journal of Mathematical Computation and Modelling, 16:87–100.
- Ingber, L. (1989): Very Fast Simulated Re- Annealing, Math Comput Modelling. Vol 12 No. 8, pp. 967-973.
- Kuang, S. (1996): *Geodetic Network Analysis and Optimal Design: Concepts and Applications,* Chelsea, Mich.: Ann Arbor Press.
- Martinez, J. L. F., Gonzalo, E. G., Alvarez, J. P., Kusma, H. A., dan Perez. C. O. (2010): PSO: A Powerful Algorithm to Solve Geophysical Inverse Problems Application to a 1D-DC Resistivity Case, Journal of Applied Geophysics 71(2010),13-25
- McCaffrey, R. (2009): *The Tectonic Framework of The Sumatran Subduction Zone*, Annu. Rev. Earth Planet. Sci. 37:365-66.
- McCauland, McCausland, W., White, R., Indrastuti, N., Gunawan, H., Patria, C., Suparman, Y., Putra, A., Triastuty, H., dan Hendrasto, M. (2017): Using a Processs-Based Model of pre-eruptive Seismic Patterns to Forecast Evolving Eruptive Styles at Sinabung volcano, Indonesia, Accepted Manuskrip Journal of Vulcanology and Geothermal Research.
- McGuire, W. J. (1995): Monitoring Active Volcanoes an Introduction, In Monitoring Active Volcanoes by B. McGuire, C.R.J. Kilburn, and J. Murray (Eds), pp. 1-31, UCL Press Limited, London, 421 pp, 1995
- McTigue, D.F. (1987): Elastic stress and deformation near a finite spherical magma body, Resolution of the point-source paradox, Journal of Geophysical Research, 92, 12, 931–12, 940, doi: 10.1029/JB092iB12p12931.
- Mogi, K. (1958): Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them,. Bulletin of the Earthquake Research Institute, 36, 99–134.
- Nakada, S., Zaennudin, A., Yoshimiti, M., Maeno, F., Hokanishi, N., Iguchi, M., Ohkura, T., gunawan, H., dan Triastuty, H. (2017): *Growth process of the lava dome/flow complex during 2013-2016 at Sinabung Volcano, North Sumatra, Indonesia,* Accepted Manuskrip Journal of Vulcanology and Geothermal Research.

- Nugraha, A, D., Indrastuti, N., Kusnandar, R., Gunawan, H., McCauland, Wendy., Aulia, Atin, N., Harlianti, dan Ulvienin. (2017): Joint 3-D tomographic imaging of Vp, Vs and Vp/Vs and hypocenter relocation at Sinabung Volcano, Indonesia from November to December 2013, Accepted Manuskrip Journal of Vulcanology and Geothermal Research.
- Ohkura, T., Iguci, M., hendrasto, M., Rosadi, U. (2012): Evaluation of activity of Guntur, Sinabung and Merapi Volcanoes, in Indonesia based on continuous GPS observation, Japan Geoscience Union Meeting 2012, 20-25 May, Makuhari, Chiba, Japan.
- Pallister, J., Wessels, R., Griswold, J., Kartadinata, N., Gunawan, H., Budianto, A., dan Primulyana, S. (2017): Remote sensing of the Sinabung eruption: Use of Optical, IR and Satellite Radar Imagery to monitor activity, estimate effusion rates, forecast collapse events and map the distribution of pyroclastic deposits, Journal of Volcanology and Geothermal Research.
- Pratomo, I. (2006): *Klasifi kasi gunung api aktif Indonesia, studi kasus dari beberapa letusan gunung api dalam sejarah*. Jurnal Geologi Indonesia, Vol. 1 No. 4 Desember 2006 209-227.
- Perez, R, E., dan Behdinan, K. (2007): *Particle Swarm Approach for Structural Design Optimization*, Computers & Structures, 85(19-20), 1579-1588.
- Primulyana, S., Kern, C., Lerner, A., Saing, U., Kunrat, S. L., Alfianti, H., dan Marlia, M. (2017): *Monitoring the volcanic emissions of Sinabung (gas and water)*, Journal of Volcanology and Geothermal Research.
- Scarpa, R., dan P. Gaspaarini. (1996): A Review of Volcano Geophysics and Volcano-Monitoring Methods, Springer Verlang, Berlin, pp.3-22.
- Sen dan Stoffa (2013): A Very Fast Simulates Annealing (VFSA) Approach for Joint-Objective Optimization, Geophysics 74(6), WCB47-WCB55.
- Shi, Y., dan Eberhart, R. (1998): A modified particle swarm optimizer, IEEE world congress on computational intelligence (Cat. No. 98TH8360) (pp. 69-73). IEEE.
- Sieh, K., dan Natawidjaya, D. (2000). Neotectonics of the Sumatran fault, Indonesia, J.Geophysical Res., v. 105, 28295-28326.
- Sutawidjaja, I. S., Prambada, O., dan Siregar, D. A. (2010): The August 2010 Phreatic Eruption of Mount Sinabung, North Sumatra, Indonesian Journal of Geology, Vol. 8, No.1, March 2013: 55-6.

Lampiran 1. Plot stasiun SAMP terhadap ITRF 2008

Lampiran 2. Plot stasiun LKWR terhadap ITRF 2008

Lampiran 3. Plot stasiun SKNL terhadap ITRF 2008

Lampiran 4. Plot stasiun GRKI terhadap ITRF 2008

Lampiran 5 Plot stasiun MRDG terhadap ITRF 2008

Lampiran 6. Plot stasiun SNBGA terhadap ITRF 2008

Lampiran 7. Plot stasiun SNBGB terhadap ITRF 2008

Lampiran.8 Plot stasiun LKWR relatif terhadap SAMP

Lampiran 9. Plot stasiun SKNL relatif terhadap SAMP

Lampiran 10. Plot stasiun GRKI relatif terhadap SAMP

Lampiran 11. Plot stasiun MRDG relatif terhadap SAMP

Lampiran 12. Plot stasiun SNBGA relatif terhadap SAMP

Lampiran 13. Plot stasiun SNBGB relatif terhadap SAMP

Lampiran 14. Plot kegempaan harian pada Gunung Sinabung

Lampiran 15. Plot pembagian periode berdasaarkan kelurusan time series

Lampiran 18. Grafik misfit periode 3 (4 Maret 2012 – 1 April 2012)

Lampiran 19. Grafik misfit periode 4 (1 April 2012 – 31 Maret 2013)

Lampiran 20. Grafik misfit periode 5 (30 Agustus 2013 – 14 Oktober 2013)

Lampiran 21. Grafik misfit periode 6 (14 oktober 2013 – 18 Maret 2014)

Lampiran 22. Grafik misfit periode 7 (18 Maret 2014 - 29 Juni 2014)

Iteration

Lampiran 23. Grafik misfit periode 8 (28 September 2014 – 3 Juni 2015)

Lampiran 24. Grafik misfit periode 9 (3 Juni 2015-17 Agustus 2015)

Lampiran 25. Grafik misfit periode 10 (17 Agustus 2015 – 19 September 2015)

Lampiran 26. Grafik misfit periode 11 (19 september 2015 – 11 Januari 2016)

Lampiran 27. Grafik misfit periode 12 (11 Janiari 2016 - 31 Agustus 2016)

