

TEJASS PUBLISHEERS International Research Publishers

True

Select Page

International Journal of Advanced Research in Computer and Communication Engineering

A monthly peer-reviewed journal

 \equiv

ß

Call for Papers

July 2022 / August 2022

Submission: eMail paper now Notification: within 1 day Publication: Immediately

Downloads

Paper Format

© Copyright

Submit to ijarcce@gmail.com

Check My Paper Status

Publication Fee

Author Center

How can I publish my paper? Why Publish in IJARCCE Benefits to Authors Instructions to Authors Frequently Asked Questions Author Testimonials

IJARCCE Management

Aims and Scope Call for Papers Editorial Board DOI and Crossref Publication Ethics Policies Subscription / Librarian Conference Special Issue Info

Archives

Current Issues / Archives Conference Special Issue Editorial Board Members

Executive Advisory Board

Reviewers Board

Professor Subramaniam Ganesan

Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA. Profile, Google Scholar, ResearchGate, ORCID

Dr. Le Quan Ha

School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK.

ResearchGate

Xiang-Fang Yu

University of Chinese Academy of Sciences, Beijing, China. ResearchGate

Dr. Randy R. Koon Koon

Faculty of Science & Technology, University of the West Indies, Jamaica, West Indies. Profile, ResearchGate

Radi Romansky

Department of Electronics, Computer Systems and Technologies, College of Energy and Electronics at Technical University of Sofia, Sofia, Bulgaria. Profile, ResearchGate, Thomson Reuters

John Joel F. Martinez

College of Engineering and Architecture –Electronics Engineering, Technological Institute of the Philippines, Quezon City, Philippines. ResearchGate

Jeong Phil Lee

Subdivision of New & Renewable Electricity, Kyungnam College of Inform. & Tech., Busan, Korea. ResearchGate

Yaremenko Artem

Power Supply Department, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kiev, Ukraine. Linkedin

Marleen Huysman

Department of Information Systems, Logistics and Innovation, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands. ResearchGate, WordPress

Ivelisse Teresa Machín Torres

Professor, Technical Department, José Martí University, Sancti Spíritus, Cuba.

Marquez

Departamento de Fisica de la Materia Condensada, Facultad de Ciencias,Universidad de Cadiz, Cadiz, Spain.

ResearchGate

Ljiljana Ivanković

University of Applied Sciences Velika Gorica, Velika Gorica, Croatia.

Georgios Konstantinou

Special Scientist FOSS Research Centre for Sustainable Energy, PV Technology, University of Cyprus, Nicosia, Cyprus.

ResearchGate

Đỗ Đình Thanh

Faculty of Information Technology, Ho Chi Minh University of Forein Languages and Information Technology (HUFLIT), Vietnam.

Vinod A Prasad

Associate Professor, School of Computer Science and Engineering, Nanyang Technological University (NTU) Singapore. profile, Googlescholar, IEEE

profile, dooglescholar, it

Myo Myint Maw

Lecturer, Department of Computer Engineering and Information Technology, Mandalay Technological University, Mandalay, Myanmar. Linkedin, IEEE

Michael Kimwele

Dr., School of Computing & Information Technology, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya. Academia, ResearchGate, GoogleScholar, Linkedin

Jose A. Noh

Facultad de Matemáticas, Universidad Autónoma de Yucatán, Tizimín, México. Academia

Indrasen Poola

Data Scientist & Artificial Intelligence – Industry Consultant, California, USA. ResearchGate, GoogleScholar, Academia, figshare, publons

Prof. Hsiu-fei Sophie Lee

Department of Special Education, National Taitung University, Taiwan. Linkedin

Dr. G.Sadashivappa

Dept of Telecommunication Engineering, R.V.College of Engineering, Bangalore. Profile, Linkedin, Biography, Google Scholar, IEEE

Dr. Redahegn Sileshi

University of North Georgia, Oakwood, Georgia, USA.

Dr. Adnan Al-Rabea

Department of Information Technology, Albalqa Applied University, Salt, Jordan. GoogleSCholar

Dr. Adrian Nicolae Branga

Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Romania. lawarencepress, Scitechnol, Googlescholar, SciencePG, ResearchGate, GoogleScholar

Dr. Magdy Shayboub A. Mahmoud

Faculty of Computers and Informatics, Suez Canal University, Egypt. IEEE, profile

Kinnal Dhameliya

Electronics Engineer, Innovative electronics Corp. 750 Trumbull Drive Pittsburgh. Linkedin, profile

Dr. Ali El-Moursy

Department of Electrical & Computer Engineering, University of Sharjah, United Arab Emirates. Academia, GoogleScholar, ORCID, Linkedin

Dr. Aeizaal Azman Abdul Wahab

School of Electrical & Electronic Engineering, Universiti Sains Malaysia (USM), Malaysia. ResearchID, ORCID, Scopus, USMExpertise, Researchgate, Googlescholar

Mohammad Houssein Ghosn

Professor, Lebanese International University, Department of Computer Science, Beirut, Lebanon. Linkedin

Dr. Tolga ENSARİ

Computer Engineering, Istanbul University, Istanbul, Turkey. Linkedin, ResearchGate, GoogleScholar, IEEE

Dr. Mohd Fadzli Mohd Salleh

School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Malaysia. ResearchGate, Profile, USMEXPERTISE, ACM.org, IEEE, GoogleScholar

Dr. Mohamed Abd El-Basset Matwalli

Faculty of Computers and Informatics, Zagazig University, Egypt.

Dr. Aeizaal Azman Abdul Wahab

Faculty of Computers and Informatics, Zagazig University, Egypt

Dean M Aslam, Ph.D., Professor

Professor & Member of National Academy of Inventors (NAI), Director of BIOMEMS and Mind Laboratory, Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA. RESUME, Profile, ResearchGate, Biography, IEEE, Googlescholar

Prof. Dr.Ushaa Eswaran, B.E., M.E., PhD.,

Professor & Dean, Department of ECE, Infant Jesus College of Engineering, Keela Vallanadu, Tamil Nadu, India.

Linkedin

S.A. Edalatpanah

Department of Applied Mathematics, Islamic Azad University of Lahijan, Iran. ResearchGate, GoogleScholar, Academia, publons

Timucin BARDAK, Ph.D.,

Bartin Vocational School, Bartin University, Bartin – Turkey. Academia

Wenzhu Yang

Professor, School of Cyber Security and Computer, Hebei University, Baoding, China.

ResearchGate, Profile

Dr Jayanti goyal

Head, Computer Department, Kanoria Girls PG College Jaipur, Rajasthan. GoogleScholar, Linkedin, AcademicPortal

Michael Kimwele

Dr., School of Computing & Information Technology, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya. ResearchGate, Academia, Google scholar, Profile, Linkedin

Dr. Elsanosy M. Elamin

Dept. of Electrical Engineering, Faculty of Engineering, University of Kordofan, Sudan. ResearchGate

Dr.Dhirendra Sharma

Chief Information Security Officer (CISO), Sr. Faculty IT, UIIT Himachal Pradesh University, Shimla. Linkedin, Profile

Professor Deepika D Pai

Department of Electronics and Communication, Vemana Institute of Technology, Koramangala, Bangalore. Profile

Georgi Tsochev

Faculty of Computer Systems and Technology, Technical University of Sofia, Sofia, Bulgaria . Academia, ResearchGate, Linkedin

Dr. Jitesh Neve

Computer Science and Engineering, University of Swahili, Republic of Panama Module Lead, Persistent System Limited, Pune. Linkedin

A. Muse

Obafemi Awolowo University, Ile-Ife, Nigeria. ResearchGate

Prof.(Dr.) Vijay Singh Rathore

Department of Computer Science, S.R.R.Govt.Arts & Science College, Karimnagar, Telangana. Profile, GoogleScholar, Youtube, ResearchGate

Janani.B

Professor, Department of CSE, Adithya Institute of Technology, Coimbatore.

Dr.S.Nagaprasad

Professor & Head, CSE, JECRC, Jaipur Engineering College & Research Centre, Jaipur.

Sile Wang

Lecturer, School of Cyber Security and Computer, Hebei University, Baoding, China. DBLP

Shearyl U. Arenas

College of Engineering and Architecture – Electronics Engineering, Technological Institute of the Philippines, Quezon City, Philippines. Linkedin, Elournals, ResearchGate

Dr. S.Rakoth Kandan, M.Tech., Ph.D.,

Professor, Department of CSE, Jayamukhi Institute of Technological Sciences, Warangal, Telangana. Profile, Linkedin, GoogleScholar

Slavcho Chungurski

Associate Professor, UTMS University, Skopje, Macedonia Information Security Management Expert, Cabinet of Deputy Prime Minister of the Republic of Macedonia. GoogleScholar, DBLP, Academia.edu

Dr D.Durga Prasad, Ph.D.,

Professor, Dept of CSE, PSCMR College of Engg., & Tech, Vijayawada. Linkedin

Dr Mohd Uruj Jaleel

Assistant Professor, College of Computing & Informatics, Saudi Electronic University, Riyadh (KSA). GoogleScholar

Mr. R.D.Sivakumar

Assistant Professor, Department of Computer Science, Ayya Nadar Janaki Ammal College, Sivakasi. Profile, SlideShare.net, Twitter

Dr. Shahzad Ashraf

Assistant Professor, Hohai University Changzhou, China

Dr. Jayeshkumar Natwarlal Modi

Assistant Professor, Computer Science, HNG University, Patan

This work is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Advanced Research in Computer and Communication Engineering

Select Page

A monthly peer-reviewed journal

 \equiv

VOLUME 10, ISSUE 9, SEPTEMBER 2021

COMPARATION OF SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORK ALGORITHM FOR LECTURER PERFORMANCE CLASSIFICATION

Wowon Priatna, Rakhmat Purnomo

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10901

Using Machine Learning Techniques Studies on Water Quality Index and Phytoplankton Diversity of Tiptur Lake, Tiptur, Tumkur-District, Karnataka, India

Dr. Chethan Chandra S Basavaraddi, Prof. Sapna S Basavaraddi, Dr. S. B. Basavaraddi, Prof. Prakasha, Prof. G C Mallikarjunaswamy,

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10902

An Investigation on the Impact of Age Group and Gender on the Authentication Performance of Keystroke Dynamics

Ademola O. Adesina, Olasupo Oyebola

Abstract | ToOI: 10.17148/IJARCCE.2021.10903

APPLICATION OF DEEPLEARNING TECHNIQUES FOR COVID-19 DIAGNOSIS AND TREATMENT

Aruna Shankar

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10904

Automating Naukri Website in BDD Framework using Cucumber Tool

Poojitha Hegde, Arpitha Hegde

Abstract | ToOI: 10.17148/IJARCCE.2021.10905

AN INTELLIGENT SYSTEM FOR SOCIAL DISTANCE DETECTION USING DEEP LEARNING TECHNIQUES

Prof. Kavya Priya M L, Keerthi B R, Rohith N K, Rakesh K S, and Akash M L

Abstract | There | DOI: 10.17148/IJARCCE.2021.10906

Cloud Computing Environment

Harshita Doad, Dr. Trilok Gupta

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10907

A Model for Improving Image Classification Using Convolutional Neural Network for Emergency Situation Reporting

Dumnamene J.S. Sako, Friday E. Onuodu, Bartholomew O. Eke

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10908

NGPSO algorithm is improved based on difficult NP problem

Vu Van Huan

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10909

SMART MEDICINE DISPENSER FOR ELDERLY AND VISUALLY IMPAIRED

V Manohar Nelli

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10910

DETECTING ILLEGAL SMUGGLING OF TREES USING RFID AND WIFI MODULE BHARGAVI K , HARSHITHA K, ANJALI , NANDINI Y G Abstract | PDF | DOI: 10.17148/IJARCCE.2021.10911

AGRICULTURE CROP SECURITY USING IOT

V Manohar Nelli Abstract | DOI: 10.17148/IJARCCE.2021.10912

Atulyam Bharat Is Not Possible Without Swastha Bharat – Digging Down With Our Big Data Challenges Shalu Gupta, Prof. Prof. (Dr.) Ganesh Gopal Varshney, (Dr.) Pooja Tripathi

Abstract | ToOI: 10.17148/IJARCCE.2021.10913

Smart Attendance System Using Face Recognition Prof.N.P. Mohod, Abhishek Tidke, Prasad Ghuge, Prafulla Rahane, Rahul Ambala, Raksha Kakde Abstract | Toppe | DOI: 10.17148/IJARCCE.2021.10914

Patient Monitoring System in Hospitalization Using PIC Microcontroller Vinayak G Kedar, Shubham K Gunde, Mohitsing B Sisodiya, Prof. Y. R. Patni Abstract | DOI: 10.17148/IJARCCE.2021.10915

Encryption Technique to Secure IOT System Sindhu S, Shriraksha Moger, Sudha Channappagoudar, Ashwini R G, Sachin K Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10916

Overview of Plug-In Hybrid Electric Vehicles K V Bhargavi, Deepthi J, Harshitha D S, Vathsala S Abstract | TPDF | DOI: 10.17148/IJARCCE.2021.10917

A Case Study on Expert System for Diagnosis of Heart Disease Ali Mir Arif Mir Asif Abstract | PDF | DOI: 10.17148/IJARCCE.2021.10918

SOUND BASED DOOR LOCKING SYSTEM USING ARDUINO

D.Arul Preethi, R.Nagarajan, S.Kannadhasan

Abstract | DOI: 10.17148/IJARCCE.2021.10919

Blockchain Voting Model

Harshil Tyagi, Aryan Srivastava, Divyansh Saxena

Abstract | 🔁 PDF | DOI: 10.17148/IJARCCE.2021.10920

IOT BASED FLOOD DETECTION

Lovely Gaur, M. K. Das, I. Srilakshmi

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10921

BRAIN TUMOUR DETECTION

Prof. Sree Sankar, Shradha, M Pratheek Shet, Sourav K

Abstract | There | DOI: 10.17148/IJARCCE.2021.10922

SMART CAR PARKING SYSTEM USING RASPBERRY PI

SHUBHAM MANGORE, RAJ NAKHAREKAR, VISHAL SAWANT, Dr. VINAYAK BHARADI

Abstract | There | DOI: 10.17148/IJARCCE.2021.10923

Review of H5 Model with Multichannel Output using CNN Algorithm

Vishesh S, Sumukh Mydur, Rakesh Gowda B

Abstract | 🔁 PDF | DOI: 10.17148/IJARCCE.2021.10924

Data Analytics for Credit Risk analysis in the Banking Sector: Linear Regression

Sumukh Mydur

Abstract | There | DOI: 10.17148/IJARCCE.2021.10925

A study to assess the prevalence of oral problems and awareness regarding oral hygiene among secondary school children in view of the informational booklet in selected schools at Shimla, Himachal Pradesh India

Ms. Indira Devi, Dr. Harvinder Kaur

Abstract | The PDF | DOI: 10.17148/IJARCCE.2021.10926

Call for Papers

May 2022 / June 2022

Submission: eMail paper now Notification: within 1 day Publication: Immediately

Downloads

Paper Format

© Copyright

Submit to ijarcce@gmail.com

Check My Paper Status

Publication Fee

Author Center

How can I publish my paper? Why Publish in IJARCCE Benefits to Authors Instructions to Authors Frequently Asked Questions Author Testimonials

IJARCCE Management

Aims and Scope

6/27/22, 3:13 PM

Call for Papers Editorial Board DOI and Crossref Publication Ethics Policies Subscription / Librarian Conference Special Issue Info

Archives

Current Issues / Archives Conference Special Issue

This work is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 9, September 2021 DOI: 10.17148/IJARCCE.2021.10901

COMPARATION OF SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORK ALGORITHM FOR LECTURER PERFORMANCE CLASSIFICATION

Wowon Priatna¹, Rakhmat Purnomo²

Informatics, Department, Bhayangkara Jakarta Raya University, Jakarta, Indonesia¹

Informatics, Department, Bhayangkara Jakarta Raya University, Jakarta, Indonesia²

Abstract: The purpose of this study is to classify the performance of lecturers from a dataset taken from the bkd.ubharajaya.ac.id application. Many universities have not been effective in assessing the performance of lecturers so that the data that has been obtained from each lecturer's report only becomes stored data, not yet into knowledge that will be used as decision makers. The research method used in this research is to start by acquiring data from the bkd.ubharajaya.ac.id application which will then be analysed through data mining stages by pre-processing data that is feasible to create a dataset. The dataset that has been created is then analysed using the 10-fold cross validation method which will divide the data into training data and testing data which will then be made a classification model using the Support Vector Machine (SVM) and Artificial Neural Network (ANN) algorithms. The expected research results with this application can classify the performance of lecturers who have the best accuracy to be used as a decision-making system.

Keywords: Lecturer Performance, Artificial Neural Network, Support Vector Machine, 10-Fold Cross Validation, Classification

I. INTRODUCTION

The performance of lecturers in higher education is tangible evidence produced by lecturers as achievements that are intended according to their roles. Lecturer performance appraisal refers to a formal and structured system to measure, assess, and influence the characteristics related to their work. Thus the assessment is the result of the work of personnel and their responsibilities[1].

Higher education has the goal of producing quality graduates. Therefore, competent teaching staff are needed in teaching [2]. At a university, all of them hold assessment techniques for their lecturers, to get outstanding lecturers so that they can be awarded with the aim of giving the lecturer morale, and being an example for other lecturers [3].

Bhayangkara University Jakarta Raya is one of the universities in Jakarta which has 6 faculties and consists of 14 study programs. To produce outstanding students requires qualified lecturers. To measure the performance of lecturers, Bhayangkara University requires lecturers to report the burden of lecturer performance each semester by requiring lecturers to report their performance through the web application www.bkd.ubharajaya.ac.id. To map the performance of each lecturer, it is necessary to classify each assessment indicator.

II. RELATED WORK

One method for classifying data is the Support Vector Machine (SVM) and Artificial Neural Network (Sihombing & Oki Prasetia Hendarsin,[4] algorithm. Research [5] uses SVM for classification in determining the optimal search value. Svm is also used in the classification of Diabetes data, Heart Data, Satellite Data and Shuttle Data) resulting in accuracy showing comparative results using different kernel functions for all data samples [6]. For classification can also use neural network algorithms such as research [7] because it is able to study non-linear models and large data. Artificial neural network is used to classify lecturers' performance on mastery of teaching materials by producing better accuracy [8]).

Research [9] uses neural networks and support vector machines to classify PDAM company performance data. /day, and Ratio of Number of Employees/1000 customers with an average accuracy of 83.93% and a prediction precision level for Unhealthy performance of 86.36%. This is better when compared to the

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 9, September 2021

DOI: 10.17148/IJARCCE.2021.10901

III.METHODOLOGY

Figure 1: Architecture of the Proposed System

The data collection technique used in this study is the lecturers' performance reports which are reported through the lecturer's performance burden in one semester. Based on Figure 1, data analysis is carried out after the data collection process by pre-processing by doing data cleansing so that the data obtained will maximally produce good patterns to be processed in data mining algorithms. The data is divided into training data and testing data, then training is carried out using a support vector machine algorithm and an Artificial Neural network. The results of the model will get accuracy and recall from the two algorithms.

IV.DISCUSSION OF RESULT

Pre-processing data is the first step in an analysis to check and correct when there is a missing value before starting the learning process. When a data contains information that is not available on one or more object variables or certain cases, data correction will be carried out. The examination of missing data in this study uses the Python programming language. The df.isnull().sum() and df.shape functions to ensure that there is no empty data in the dataset to be processed. Table 1 results from processing missing data using python. Transforming the data used, and dividing the data into two parts (data partition).

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 9, September 2021

DOI: 10.17148/IJARCCE.2021.10901

TABLE I CHECK DATA MISSING

Variable	Valid	Missing	Percentage
Pengajaran (Teaching)	315	0	100%
Penelitian dan Publikasi	315	0	100%
(Research and Publication)			
Pengabdian (Devotion)	315	0	100%
Penunjang(Support)	315	0	100%
Rata-Rata Index (Average	315	0	100%
Index)			

Data transformation Using the function scaler = StandardScaler(), we get the data from the data transformation with a scale of -1 to 1 as presented in Appendix 2. After the transformation results are obtained, we can proceed to the next step, namely data sharing. Split data In this step, divide the training data and testing data using the function from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) python. With specifications 80% training data and 20% testing data. Prediction results using SVM can be seen in table 2.

TABLE 2 FONT SIZES FOR PAPERS

Fold Ke-	Kernel Function Accuracy			
	Linear	Polynomial	Radial Basis Function (RBF).	
8	93%	92%	97,4%	
9	93,4%	93%	98%	
10	90%	92%	97,7%	
Average	92.1%	92.3%	97.7%	

Table 2 shows that the calculation of the accuracy of lecturer performance classification using SVM with various kernel functions has a fairly good accuracy value. From the calculation of 10-fold cross validation for this accuracy, the highest average percentage of accuracy is the SVM prediction with the RBF Kernel function of 97.7%. The second best percentage of accuracy is the implementation of SVM using the Polynomial Kernel of 92.3%, followed by the use of Linear Kernel with the percentage of accuracy of 92.1%. while the results of the classification using python get the recal results obtained an average score of 0.50, the average recall value gets a score of 0.34 while the accuracy value gets a value of 0.52.

To build a model for ANN classification, several things are important to build a model in an artificial neural network: input, function, hidden layer, activation, output. In this study using 4 inputs from variable x and output from variable y. hidden layer uses 5 hidden layers (dense), while the activation function is relu, softmax. To get the classification prediction result model using ANN use the function in python: history=model.fit(X_train, Y_train, validation_data=(X_test, Y_test),epochs=50, batch_size=10). the results of the training data show the value of accuracy, lost validation, validation of accuracy of the trained data, while the training was carried out for 50 epochs. The classification result generated by ANN is 0.9.

V. CONCLUSION

In the classification of lecturer performance using a support vector machine using 3 kernels, namely: linear, polynomial and RBF. While in ANN the kernel function here is the activation function, the activation functions used are relu and softmax. The results of the accuracy of lecturer performance classification using ANN get the highest accuracy of 0.9 while SVM gets an accuracy of 0.5. then the recommendation for the classification of lecturer performance using the ANN algorithm.

REFERENCES

[1]. Adi Suwasono, D. (2016). Sistem Evaluasi Kinerja Dosen. Matangglumpangdua: Universitas Almuslim.

[2]. Afif, M. H., & Hedar, A. R. (2012). Data classification using support vector machine integrated with scatter search method. Proceedings of the 2012 Japan-Egypt Conference on Electronics, Communications and Computers, JEC-ECC 2012, 168–172. https://doi.org/10.1109/JEC-ECC.2012.6186977

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 10, Issue 9, September 2021

DOI: 10.17148/IJARCCE.2021.10901

- [3]. Alkhasawneh, R., & Hobson, R. (2011). Modeling student retention in science and engineering disciplines using neural networks. 2011 IEEE Global Engineering Education Conference, EDUCON 2011, 660–663. https://doi.org/10.1109/EDUCON.2011.5773209
- [4]. Alloghani, M., M. Alani, M., Al-Jumeily, D., Baker, T., Mustafina, J., Hussain, A., & J. Aljaaf, A. (2019). A systematic review on the status and progress of homomorphic encryption technologies. Journal of Information Security and Applications, 48(October). https://doi.org/10.1016/j.jisa.2019.102362
- [5]. Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview. Journal of Physics: Conference Series, 1142(1). https://doi.org/10.1088/1742-6596/1142/1/012012
- [6]. Bernard, J., Chang, T. W., Popescu, E., & Graf, S. (2015). Using artificial neural networks to identify learning styles. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9112(June), 541–544. https://doi.org/10.1007/978-3-319-19773-9_57
- [7]. Frieyadie. (2018). Metode AHP Sebagai Penunjang Keputusan Untuk Penilaian Kinerja Kerja Karyawan SPBU. Jurnal TECHNO Nusa Mandiri, 15(1), 63–68. Retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/index.php/techno/article/view/840/pdf
- [8]. Guleria, P., Thakur, N., & Sood, M. (2015). Predicting student performance using decision tree classifiers and information gain. Proceedings of 2014 3rd International Conference on Parallel, Distributed and Grid Computing, PDGC 2014, 126–129. https://doi.org/10.1109/PDGC.2014.7030728
- [9]. Ha, D. T., Giap, C. N., Loan, P. T. T., & Huong, T. L. H. (2020). An Empirical Study for Student Academic Performance Prediction Using Machine Learning Techniques. International Journal of Computer Science and Information Security, 18(3), 21–28.

Similarity Found: 30%

Date: Monday, March 28, 2022 Statistics: 499 words Plagiarized / 1690 Total words Remarks: Medium Plagiarism Detected - Your Document needs Selective Improvement.

IJARCCE International Journal of Advanced Research in Computer and Communication Engineering Vol. 10, Issue 9, September 2021 DOI: 10.17148/IJARCCE.2021.10901 @IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 1 ISSN (O) 2278-1021, ISSN (P) 2319-5940 COMPARATION OF SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORK ALGORITHM FOR LECTURER PERFORMANCE CLASSIFICATION Wowon Priatna1, Rakhmat Purnomo2 Informatics, Department, Bhayangkara Jakarta Raya University, Jakarta, Indonesia1 Informatics, Department, Bhayangkara Jakarta Raya University, Jakarta, Indonesia 2 Abstract: The purpose of this study is to classify the performance of lecturers from a dataset taken from the bkd.ubharajaya.ac.id application.

Many universities have not been effective in assessing the performance of lecturers so that the data that has been obtained from each lecturer's report only becomes stored data, not yet into knowledge that will be used as decision makers. The research method used in this research is to start by acquiring data from the bkd.ubharajaya.ac.id application which will then be analysed through data mining stages by pre-processing data that is feasible to create a dataset.

The dataset that has been created is then analysed using the 10-fold cross validation method which will divide the data into training data and testing data which will then be made a classification model using the Support Vector Machine (SVM) and Artificial Neural Network (ANN) algorithms. The expected research results with this application can classify the performance of lecturers who have the best accuracy to be used as a decision-making system.

Keywords: Lecturer Performance, Artificial Neural Network, Support Vector Machine,

10-Fold Cross Validation, Classification I. INTRODUCTION The performance of lecturers in higher education is tangible evidence produced by lecturers as achievements that are intended according to their roles. Lecturer performance appraisal refers to a formal and structured system to measure, assess, and influence the characteristics related to their work.

Thus the assessment is the result of the work of personnel and their responsibilities[1]. Higher education has the goal of producing quality graduates. Therefore, competent teaching staff are needed in teaching [2]. At a university, all of them hold assessment techniques for their lecturers, to get outstanding lecturers so that they can be awarded with the aim of giving the lecturer morale, and being an example for other lecturers [3].

Bhayangkara University Jakarta Raya is one of the universities in Jakarta which has 6 faculties and consists of 14 study programs. To produce outstanding students requires qualified lecturers. To measure the performance of lecturers, Bhayangkara University requires lecturers to report the burden of lecturer performance each semester by requiring lecturers to report their performance through the web application www.bkd.ubharajaya.ac.id.

To map the performance of each lecturer, it is necessary to classify each assessment indicator. II. RELATED WORK One method for classifying data is the Support Vector Machine (SVM) and Artificial Neural Network (Sihombing & Oki Prasetia Hendarsin,[4] algorithm. Research [5] uses SVM for classification in determining the optimal search value.

Svm is also used in the classification of Diabetes data, Heart Data, Satellite Data and Shuttle Data) resulting in accuracy showing comparative results using different kernel functions for all data samples [6]. For classification can also use neural network algorithms such as research [7] because it is able to study non-linear models and large data.

Artificial neural network is used to classify lecturers' performance on mastery of teaching materials by producing better accuracy [8]). Research [9] uses neural networks and support vector machines to classify PDAM company performance data. /day, and Ratio of Number of Employees/1000 customers with an average accuracy of 83.93% and a prediction precision level for Unhealthy performance of 86.36%.

This is better when compared to the <mark>IJARCCE International Journal of Advanced Research in Computer and Communication Engineering Vol. 10, Issue 9, September 2021 DOI: 10.17148/IJARCCE.2021.10901 @IJARCCE This work is licensed under a</mark>

Creative Commons Attribution 4.0 International License 2 ISSN (O) 2278-1021, ISSN (P) 2319-5940 III.

METHODOLOGY Figure 1: Architecture of the Proposed System The data collection technique used in this study is the lecturers' performance reports which are reported through the lecturer's performance burden in one semester. Based on Figure 1, data analysis is carried out after the data collection process by pre-processing by doing data cleansing so that the data obtained will maximally produce good patterns to be processed in data mining algorithms.

The data is divided into training data and testing data, then training is carried out using a support vector machine algorithm and an Artificial Neural network. The results of the model will get accuracy and recall from the two algorithms. IV. DISCUSSION OF RESULT Pre-processing data is the first step in an analysis to check and correct when there is a missing value before starting the learning process.

When a data contains information that is not available on one or more object variables or certain cases, data correction will be carried out. The examination of missing data in this study uses the Python programming language. The df.isnull().sum() and df.shape functions to ensure that there is no empty data in the dataset to be processed. Table 1 results from processing missing data using python.

Transforming the data used, and dividing the data into two parts (data partition). IJARCCE International Journal of Advanced Research in Computer and Communication Engineering Vol. 10, Issue 9, September 2021 DOI: 10.17148/IJARCCE.2021.10901 @IJARCCE This work is licensed under a Creative Commons Attribution 4.0

International License 3 ISSN (O) 2278-1021, ISSN (P) 2319-5940 TABLE I CHECK DATA MISSING Variable Valid Missing Percentage Pengajaran (Teaching) 315 0 100% Penelitian dan Publikasi (Research and Publication) 315 0 100% Pengabdian (Devotion) 315 0 100% Penunjang(Support) 315 0 100% Rata-Rata Index (Average Index) 315 0 100% Data transformation Using the function scaler = StandardScaler(), we get the data from the data transformation with a scale of -1 to 1 as presented in Appendix 2.

After the transformation results are obtained, we can proceed to the next step, namely data sharing. Split data In this step, divide the training data and testing data using the function from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) python.

With specifications 80% training data and 20% testing data. Prediction results using

SVM can be seen in table 2. TABLE 2 FONT SIZES FOR PAPERS Fold Ke- Kernel Function Accuracy Linear Polynomial Radial Basis Function (RBF). 8 93% 92% 97,4% 9 93,4% 93% 98% 10 90% 92% 97,7% Average 92.1% 92.3% 97.7% Table 2 shows that the calculation of the accuracy of lecturer performance classification using SVM with various kernel functions has a fairly good accuracy value.

From the calculation of 10-fold cross validation for this accuracy, the highest average percentage of accuracy is the SVM prediction with the RBF Kernel function of 97.7%. The second best percentage of accuracy is the implementation of SVM using the Polynomial Kernel of 92.3%, followed by the use of Linear Kernel with the percentage of accuracy of 92.1%.

while the results of the classification using python get the recal results obtained an average score of 0.50, the average recall value gets a score of 0.34 while the accuracy value gets a value of 0.52. To build a model for ANN classification, several things are important to build a model in an artificial neural network: input, function, hidden layer, activation, output. In this study using 4 inputs from variable x and output from variable y.

hidden layer uses 5 hidden layers (dense), while the activation function is relu, softmax. To get the classification prediction result model using ANN use the function in python: history=model.fit(X_train, Y_train, validation_data=(X_test, Y_test),epochs=50, batch_size=10).

the results of the training data show the value of accuracy, lost validation, validation of accuracy of the trained data, while the training was carried out for 50 epochs. The classification result generated by ANN is 0.9. V. CONCLUSION In the classification of lecturer performance using a support vector machine using 3 kernels, namely: linear, polynomial and RBF.

While in ANN the kernel function here is the activation function, the activation functions used are relu and softmax. The results of the accuracy of lecturer performance classification using ANN get the highest accuracy of 0.9 while SVM gets an accuracy of 0.5. then the recommendation for the classification of lecturer performance using the ANN algorithm. REFERENCES [1]. Adi Suwasono, D. (2016).

Sistem Evaluasi Kinerja Dosen. Matangglumpangdua: Universitas Almuslim. [2]. Afif, M. H., & Hedar, A. R. (2012). Data classification using support vector machine integrated with scatter search method. Proceedings of the 2012 Japan-Egypt Conference on Electronics, Communications and Computers, JEC-ECC 2012, 168 172. https://doi.org/10.1109/JEC- ECC.2012.6186977 <mark>IJARCCE International Journal of Advanced Research in Computer and Communication Engineering Vol. 10, Issue 9, September 2021 DOI: 10.17148/IJARCCE.2021.10901 @IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 4 ISSN (O) 2278-1021, ISSN (P) 2319-5940 [3]. Alkhasawneh, R.,</mark>

& Hobson, R. (2011). Modeling student retention in science and engineering disciplines using neural networks. 2011 IEEE Global Engineering Education Conference, EDUCON 2011, 660 – 663. https://doi.org/10.1109/EDUCON.2011.5773209 [4]. Alloghani, M., M. Alani, M., Al-Jumeily, D., Baker, T., Mustafina, J., Hussain, A., & J. Aljaaf, A. (2019). A systematic review on the status and progress of homomorphic encryption technologies.

Journal of Information Security and Applications, 48(October).

https://doi.org/10.1016/j.jisa.2019.102362 [5]. Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview. Journal of Physics: Conference Series, 1142(1). https://doi.org/10.1088/1742-6596/1142/1/012012 [6]. Bernard, J., Chang, T. W., Popescu, E., & Graf, S. (2015). Using artificial neural networks to identify learning styles.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9112(June), 541 – 544. https://doi.org/10.1007/978-3-319-19773-9_57 [7]. Frieyadie. (2018). Metode AHP Sebagai Penunjang Keputusan Untuk Penilaian Kinerja Kerja Karyawan SPBU. Jurnal TECHNO Nusa Mandiri, 15(1), 63 – 68. Retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/index.php/techno/article/view/840/pdf [8]. Guleria, P., Thakur, N., & Sood, M. (2015).

Predicting student performance using decision tree classifiers and information gain. Proceedings of 2014 3rd International Conference on Parallel, Distributed and Grid Computing, PDGC 2014, 126 – 129. https://doi.org/10.1109/PDGC.2014.7030728 [9]. Ha, D. T., Giap, C. N., Loan, P. T. T., & Huong, T. L. H. (2020). An Empirical Study for Student Academic Performance Prediction Using Machine Learning Techniques.

International Journal of Computer Science and Information Security, 18(3), 21 – 28.

INTERNET SOURCES:

- 4% www.researchgate.net > profile > Olasupo-Oyebola
- 2% www.researchgate.net > publication > 348034909
- 2% www.researchgate.net > publication > 354965477

<1% - repository.ubharajaya.ac.id > 13355 4% - ijarcce.com > papers > comparation-of-support-vector <1% - imslab.org > mcml2012 > data <1% - www.researchgate.net > publication > 235299998_The 1% - journal.uii.ac.id > AMBR > article <1% - pubmed.ncbi.nlm.nih.gov > 15130823 <1% - www.researchgate.net > publication > 285663733 Data <1% - www.forbes.com > sites > bernardmarr <1% - cs.uwaterloo.ca > ~klarson > teaching 1% - www.researchgate.net > profile > Savita_Bakare 1% - www.ncbi.nlm.nih.gov > pmc > articles <1% - www.upgrad.com > blog > data-preprocessing-in <1% - quizlet.com > 133876595 > business-research-ch-15 <1% - towardsdatascience.com > creating-python-functions <1% - www.sqlshack.com > data-flow-transformations-in 1% - www.geeksforgeeks.org > how-to-split-a-dataset <1% - www.researchgate.net > publication > 344458945_The <1% - machinelearningmastery.com > how-to-estimate-model <1% - www.javacodemonk.com > difference-between-loss 1% - www.researchgate.net > publication > 343946987 1% - ieeexplore.ieee.org > document > 6186977 1% - www.scimagojr.com > journalsearch <1% - ijarcce.com <1% - www.scilit.net > conference > details 1% - researchonline.ljmu.ac.uk > id > eprint <1% - www.researchgate.net > profile > Matthew-Nunes 1% - www.growkudos.com > publications > 10 1% - www.researchgate.net > publication > 298517764 1% - repository.nusamandiri.ac.id > index > repo 1% - ieeexplore.ieee.org > abstract > document <1% - www.proceedings.com > 25168

1% - publons.com > journal > 30902

UNIVERSITAS BHAYANGKARA JAKARTA RAYA FAKULTAS ILMU KOMPUTER

Kampus I: JI. Harsono RM No. 67, Ragunan, Pasar Minggu, Jakarta Selatan 12550 Telepon: (021) 27808121 – 27808822 Kampus II: JI. Raya Perjuangan, Marga Mulya, Bekasi Utara, Jawa Barat Telepon: (021) 88955882, Fax: (021) 88955871 Web: <u>www.ubharajaya.ac.id/fasilkom/</u>, Email: <u>fasilkom@ubharajaya.ac.id</u>

SURAT TUGAS

Nomor: ST/100/VIII/2021/B-FASILKOM-UBJ

- 1. Dasar: Kalender Akademik Ubhara Jaya Tahun Akademik 2020/2021.
- 2. Dalam rangka mewujudkan Tri Dharma Perguruan Tinggi untuk Dosen di Universitas Bhayangkara Jakarta Raya maka dihimbau untuk melakukan penelitian.
- 3. Sehubungan dengan hal tersebut di atas, maka Dekan Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya menugaskan:

NO.	NAMA	NIDN	JABATAN	KETERANGAN
1.	Wowon Priatna, ST., M.TI.	0429118007	Dosen Tetap	Sebagai
	, , , , ,		Prodi Informatika	Penulis Pertama
2.	Rakhmat Purnomo, S.Pd.,	0322108201	Dosen Tetap	Sebagai
	S.Kom., M.Kom.		Prodi Informatika	Penulis Kedua

Membuat Artikel Ilmiah dengan judul "Comparation of Support Vector Machine and Artificial Neural Network Algorithm For Lecturer Perfomance Classification" pada media jurnal International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE) Vol. 10, September 2021, ISSN (O) 2278-1021, ISSN (P) 2319-5940.

4. Demikian penugasan ini agar dapat dilaksanakan dengan penuh rasa tanggung jawab.

Bekasi, 17 Agustus 2021 DEKAN FAKULTAS ILMU KOMPUTER CARTA RAY Tyastuti Sri Lestari, S.Si., M.M. NIP. 1408206

Paraf: 1. Ka. Prodi Informatika .