230_Yuri-Delano-2_ISSN.pdf by @karaking.id • turnitin (0858-9596-0443) **Submission date:** 23-Nov-2023 10:03PM (UTC-0600) **Submission ID:** 2237228685 File name: 230_Yuri-Delano-2_ISSN.pdf (396.99K) Word count: 3763 **Character count: 18764** ### EXPERIMENTAL DESIGN MODEL TO REDUCE THE NUMBER OF EMULSION POLYMER PRODUCTS REJECT AT PT. AHP Yuri Deno Regent1*, Mohamad Fajri1 ¹Engineering Faculty, Bhayangkara Jakarta Raya University, Indonesia *yuri.delano@dsn.ubharajaya.ac.id #### Abstract. PT AHP is a chemical industry with the main product of emulsion polymer. The problem faced is the inconsistent product quality, especially the GP 31XXC product. PT AHP must immediately take action to reduce problem products, and increase productivity. The purpose of this study was to identify the cause of the problem, provide suggestions for improvement, and find out the decline in the no-good GP 31XXC product after repairs were made. This study uses an experimental design method, with SPSS17.0 statistical analysis. The results of the application of the experimental design show that the cause of the problem with the GP 31XXC product is the technical production process, namely, the cooling temperature parameters, feeding starting temperature, and inappropriate observation time. Proposed improvements made are changes to standardization and validation of temperature and time parameters. The cooling temperature is to 95°C - 96°C, the starting temperature is feeding on 80°C to 89°C, and the observation time is from 90 minutes - 120 minutes to a minimum of 93 minutes. The decline in the GP 31XXC no-good product after repairs were made was 90%, from 10 batches to 1 batch. Keywords: chemical industry, emulsion polymer, quality, experimental design. #### Introduction PT AHP is a manufacturing industry whose main products are emulsion polymer, textile sizing powder, alkyd resins, acrylic resins, and car care products. To be able to produce consistent product quality can be achieved with a series of appropriate and effective process controls. Based on observations, it is known that there are still a large number of nogood products. Table 1. No-good product data 2019 - 2021 | No | Years | Reject Batch | GP31XXC Reject Batch | Percentage | |----|-------|--------------|----------------------|------------| | 1 | 2019 | 104 | 15 | 14% | | 2 | 2020 | 123 | 17 | 14% | | 3 | 2021 | 32 | 10 | 31% | | | | | | • | Source: PT. AHP (2021) Based on Table 1. GP 31XXC reject products have increased. In the period 2019 and 2020, GP 31XXC products accounted for 14% of the batch of total no-good products. Then the 2021 production GP 31XXC accounted for 31% of the total batch of no-good products. Table 2. No-good batch measurement results | Batch | %TS Initial (32.19-33.19) | %TS End
of Aging (>=57) | %TS After P
(>= 55) | %TS Final
(55-57) | Particle size (0,210-0,235 μ) | Appearance | Status | |--------|---------------------------|----------------------------|------------------------|----------------------|-------------------------------|------------|--------| | 876001 | 33.12 | 55.33 | 55.58 | 55.58 | 0.3170 | White | NG | | 876002 | 32.83 | 56.96 | 56.30 | 56.08 | 0.2429 | White | NG | | 876004 | 32.12 | 57.71 | 56.35 | 55.91 | 0.2487 | White | NG | | 876005 | 31.89 | 56.98 | 57.57 | 56.34 | 0.2606 | White | NG | | 876006 | 32.03 | 56.65 | 56.40 | 56.30 | 0.2603 | White | NG | | 876007 | 32.18 | 57.68 | 56.33 | 55.74 | 0.2476 | White | NG | | 876008 | 31.18 | 56.68 | 56.13 | 56.00 | 0.2487 | White | NG | ## 1st International Conference on Advanced Technology in Chemical Engineering ISSN: 2987-5064 | 876010 | 30.74 | 56.60 | 55.62 | 55.77 | 0.2441 | White | NG | |--------|-------|-------|-------|-------|--------|-------|----| | 876012 | 31.29 | 56.67 | 56.49 | 56.49 | 0.2545 | White | NG | Based on table 1 and table 2, PT AHP should take quick action to deal with no-good products, and increase productivity. Corrective actions need to be taken because the target for no-good products in the last three years has fluctuated, so the improvements made do not take place continuously. To find out the root of the problem above, we need an appropriate method to be able to find 27 the root of the problem caused by the appearance that is not up to standard, as well as looking for alternative actions to reduce the level of no-good products in this company so that the target for no-good products can be achieved with permanent and continuous improvements. continuously. The type of problem that often occurs in GP 31XXC products is a mismatch in appearance, which is white while the standard is milky white to bluish. The appearance obtained is influenced by the particle size value, if the particle value is more than the standard, the appearance is not standard, namely white. If this problem occurs, it is necessary to carry out a rework process so that the product can be adjusted to the standard. For this reason, the author intends to implement improvements by applying the basic steps of experimental design at the stage of the GP 31XXC product process with the aim of reducing the level of no-good products and hoping that it will have a positive impact on the company. The aims of this research is to Identify the biggest possible cause of the problem with the GP 31XXC product, Provide suggestions for improvement with the aim of reducing the level of no-good GP 31XXC products, and knowing the problem of the GP 31XXC product declineafter repairs were made with the experimental design method. #### Results This section describes the initial data collection of the GP 31XXC production process. Researchers took data on the production process carried out at PT AHP. The order of work, work steps, and how long the production process takes GP 31XXC. In the production process of the GP 31XXC, the process operator is provided with a work instruction sheet or generally called work instructions. Work instructions contain instructions and work steps and process parameters. Each production operator follows the instructions contained in the description of the work instructions and product formulas. However, in the production process, there are still process discrepancies or problems with the final product. The discrepancies found in the final product are viscosity, pH, appearance, product application, and product particle size. The initial data collection of the suitable and unsuitable GP 31XXC production process was taken randomly to analyze the problem. This data will be used as a reference forcomparison of the actual process. GP 31XXC process data collection by searching for past data stored in the production and quality control data files. Looking to collect and summarize other data related to the production process of the no-good GP 31XXC. Figure 1. GP 31XXC process flowchart Source: PT. AHP (2021) Table 3. Physical properties and aplication test | Batch | Catalis
Initial
Temp(°C) | MPE
Initial
Temp(°C) | Feeding
Start
Tempt(°C) | Cooling
Temp
(°C) | Catalis
Initial
RPM | MPE
Initial
RPM | Feeding
Start
RPM | Catalis
Initial
Time
(Minuts) | MPE
Initial
Time
(Minutes) | Feeding
Start
Time
(Minutes) | |----------|--------------------------------|----------------------------|-------------------------------|-------------------------|---------------------------|-----------------------|-------------------------|--|-------------------------------------|---------------------------------------| | HA876001 | 79.3 | 78.7 | 89.6 | 93.0 | 23 | 27 | 23 | 10 | 12 | 93 | | HA876002 | 77.5 | 76.8 | 90.4 | 91.5 | 23 | 27 | 25 | 10 | 12 | 95 | | HA876004 | 77.6 | 77.2 | 85.0 | 93.8 | 23 | 25 | 25 | 10 | 12 | 94 | | HA876005 | 77.3 | 76.8 | 91.7 | 92.0 | 23 | 25 | 23 | 10 | 12 | 115 | | HA876006 | 77.1 | 76.9 | 79.9 | 92.0 | 23 | 27 | 23 | 10 | 12 | 98 | | HA876007 | 78.2 | 77.8 | 72.6 | 92.0 | 23 | 27 | 23 | 15 | 17 | 115 | | HA876008 | 77.7 | 77.6 | 85.9 | 93.0 | 23 | 27 | 23 | 10 | 12 | 98 | | HA876010 | 78.4 | 77.7 | 86.1 | 93.0 | 23 | 27 | 23 | 10 | 12 | 88 | | HA876012 | 76.0 | 75.7 | 88.2 | 90.2 | 23 | 27 | 23 | 10 | 12 | 93 | Source: PT. AHP (2021) #### a. GP 31XXC Problem Analysis Analysis of the problem in this study was carried out using the 5 why method to find outthe causal relationship that became the root cause of the problem of product appearance discrepancies that emerged. The factors in table 4 are very influential on the results of the process. Based on the 5 why analysis that was reviewed, problems were found in the environment, machines, methods, and humans. However, the problems found can be resolved immediately, except for the method, namely the technical process method. So it is necessaryto take corrective action, namely validation and standardization of technical processes. However, to know in detail the technical parameters of the process that affect the problems that occur, further analysis is needed using failure mode and effect analysis (FMEA). Table 4. GP 31XXC Analysis problem | Faktor | Why1 | Why2 | Why3 | Why4 | Why5 | Action | |-------------|---|--|--|--|---|--| | Environment | Dirty reactor | Leftovers
from
previous
products | Non-
standard
washing
method | Non-standard cleaning tools | Different
cleaning
operator
skills | Standardization of cleaning methods, tools and operators | | Machine | Reactor
problem | Vibrating
agitator | Mixing is not optimal | Unstable rpm rotation and noise | Teflon axle is
thinning due
to erosion | Preventive
Maintenance
routine | | Method | Formula | Process
technique
is not
detailed | Process
parameters
do not match | temperature
and time | Improved
temperature
and time
parameters | Validation and
Standardization | | Man | Not all
operator
process
technical
according to
standard | Skills are not the same | Knowledge
and not the
same
experience | Socialization
of work
instructions | Provided
internal
training | Operator
assessment | | Material | Main and
supporting
raw
materials | No change
in quality | No change in quality | Table 5. FMEA Analysis problem | No | Process
Parameter | Root Cause | Problem Effect | S | o | D | RPN | Rank | |----|---------------------------------------|---|--|---|----|---|-----|------| | 1 | Catalyst initial temperature | Initial temperature is too high | Inappropriate polymerization reaction | 7 | 6 | 1 | 42 | 7 | | | | Initial temperature is too low | Initial reactor catalyst failed | 7 | 5 | 1 | 35 | 11 | | 2 | MPE initial temperature | Exceeded the maximum initial temperature limit of MPE | High initial solid total | 5 | 5 | 1 | 25 | 12 | | | (75°C - 78°C) | Exceeds the minimum initial temperature limit of MPE | Low initial solid total | 5 | 3 | 1 | 15 | 16 | | 3 | Feeding start
temperature | Low starting feedingtemperature | High viscosity and larger particle size | 7 | 10 | 1 | 70 | 2 | | | (80°C) | High starting feeding temperature | Dilute viscosity | 7 | 6 | 1 | 42 | 6 | | | Cooling | Cooling temperature too low | Particle size is bigger | 7 | 10 | 1 | 70 | 1 | | 4 | temperature
(93°C - 95°C) | Cooling temperature too high | Particle size is not standard | 7 | 6 | 1 | 42 | 5 | | 5 | Initial rpm of
catalyst (23) | RPM too low | The polymerization reaction tends to be slow | 7 | 1 | 1 | 7 | 20 | | | | RPM too high | The emergence of fish eyes | 7 | 3 | 1 | 21 | 15 | | 6 | MPE initials Rpm
(27) | RPM too low | The accumulation of monomers | 7 | 5 | 1 | 35 | 10 | | | | RPM too high | Foaming on the product | 7 | 3 | 1 | 21 | 14 | | 7 | Rpm start feeding (23) | Rpm feeding too low | The accumulation of monomers | 7 | 5 | 1 | 35 | 9 | | | | Rpm feeding too high | Dilute viscosity | 7 | 2 | 1 | 14 | 19 | | 8 | Initial catalyst
time (10 minutes) | Time is too fast | Polymerization reaction is not optimal | 7 | 3 | 1 | 21 | 13 | | | | Time is too long | The polymerization reaction tends to be slow | 7 | 2 | 1 | 14 | 18 | | 9 | MPE initial
time (12 minutes) | Time is too fast | Polymerization reaction is not optimal | 7 | 5 | 1 | 35 | 8 | | | - | Time is too long | The polymerization reaction tends to be slow | 7 | 2 | 1 | 14 | 17 | | 10 | Observation time
(90 - 120 | Time is too fast | Total solid product low | 7 | 6 | 1 | 42 | 4 | | | minutes) | Time is too long | Particle size is bigger | 7 | 9 | 1 | 63 | 3 | Based on the results of the FMEA analysis in table 5, the technical parameters of the process that have a high RPN value are cooling temperature, feeding temperature, and observation time. The technical parameters of this process will be the main parameters in this research experiment. #### b. Identification of Experimental Data Recording of data material at the time of the experiment was carried out to find variables and to reduce the level of no-good GP 31XXC products as well as information as evidence that could identify the identity of the problem in the study. Evidence in the form of process batch record data. Information on the batch record process will be used as the basisfor processing research data which will be used as reference material for drawing conclusions. In the experiment using experimental materials as many as 8 process batches. Where each experimental process uses the same raw materials, process equipment, and test parameters. The test parameters of the experimental results are total solid, pH, viscosity, particle size, and appearance. Table 6. Experimental data atribute | Cooling | Feeding Start | Observation | |------------------|------------------|----------------| | Temperature (°C) | Temperature (°C) | Time (Minutes) | | 91 | 94 | 89 | | 92 | 93 | 90 | | 93 | 92 | 91 | | 94 | 91 | 92 | | 95 | 90 | 93 | | 96 | 89 | 93 | The fixed variable of the production process is that the quantity of raw material is 20200 kg and rpm according to the product formula. The independent variables that became the experimental parameters were the cooling temperature, the starting temperature for feeding, and the observation time. #### c. GP 31XXC trial results The results of the GP 31XXC production process use production process equipment that has been prepared by the production operator. The experimental results of GP 31XXC in this study were divided to two, namely, the results of the experimental parameters and the results of the experimental measurements. The results of the experimental parameters are the results of checking process parameters, namely temperature, rpm, and time. The results of the experimental measurements are measurements of the specifications of the GP 31XXC productin the laboratory, namely total solids, pH, viscosity, and particle size in accordance with standard product specifications. Table 7. Trial results | No Trial | Feeding Start
Temperature (°C) | Cooling
Temperature(°C) | Observation
Time (Minute) | Particle size (0,210-0,235 μ) | |----------|-----------------------------------|----------------------------|------------------------------|-------------------------------| | 1 | 94 | 91 | 89 | 0.2446 | | 1 | 94 | 91 | 89 | 0.2461 | | 2 | 93 | 92 | 90 | 0.2496 | | | 93 | 92 | 90 | 0.2437 | | 3 - | 92 | 93 | 91 | 0.2639 | | 3 | 92 | 93 | 91 | 0.2579 | | 4 | 91 | 94 | 92 | 0.2501 | | 4 | 91 | 94 | 92 | 0.2542 | | 5 | 90 | 95 | 93 | 0.2220 | | 5 | 90 | 95 | 93 | 0.2175 | | 6 - | 89 | 96 | 93 | 0.2285 | | | 89 | 96 | 93 | 0.2233 | #### d. ANOVA test results The ANOVA test was carried out to test whether the three process parameters had the same average. The ANOVA output is the end of the calculation that is used to determine the analysis of the hypothesis to be accepted or rejected. In this case, the hypotheses to be tested are the cooling temperature parameters, feeding temperature, and observation time which will be described in each parameter. #### • Cooling temperature In this case the hypothesis to be tested is: Ho: There is no significant effect of cooling temperature process parameters on theaverage particle size H1: There is a significant effect of cooling temperature process parameters on the averageparticle size ISSN: 2987-5064 Table 8. Anova single factor temperature cooling test | | 4 | | | | | | |---------------------|---------------|----|----------------|--------|--------|-------| | Source of Variation | Sum of Square | df | Mean of Square | Fcount | Ftable | Sig | | Between groups | 0.002 | 2 | 0.001 | 57.87 | 4.26 | 000.0 | | Within groups | 0.000 | 9 | 0.000 | | | | | Groups | Count | Sum | Average | Std Dev. | |-------------------------------|-------|---------|---------|-----------| | Temperature Cooling 91 - 92°C | 4 | 0.98404 | 0.24601 | 0.0026147 | | Temperature Cooling 93 - 94°C | 4 | 1.02610 | 0.25653 | 0.0058585 | | Temperature Cooling 95 - 96°C | 4 | 0.89130 | 0.22283 | 0.0045265 | Based on table 8, the Fcount value is 57.870 and Ftable 4.26, so Fcount is a later than Ftable, meaning that H0 is rejected and H1 is accepted. While the significant value orprobability is 0.000 <0.05, meaning that H0 is rejected. These results indicate that there is a significant effect of cooling temperature process parameters on the average average particle size results. The desired particle size standard is 0.210 - 0.235, the average particle size value is 0.22283 at the cooling temperature parameter of 95°C - 96°C. #### • Feeding temperature In this case the hypothesis to be tested is: Ho: There is no significant effect of temperature feeding process parameters on theaverage particle size H1: There is a significant effect of the feeding temperature process parameter on theaverage particle size Table 9. Feeding temperature single factor anova test | | 4 | | | | | | |---------------------|---------------|----|----------------|--------|--------|-------| | Source of Variation | Sum of Square | df | Mean of Square | Fcount | Ftable | Sig | | Between groups | 0.002 | 2 | 0.001 | 57.87 | 4.26 | 0.000 | | Within groups | 0.000 | 9 | 0.000 | | | | | Groups | Count | Sum | Average | Std Dev. | |-------------------------------|-------|---------|---------|-----------| | Temperature feeding 89 - 90°C | 4 | 0.89130 | 0.22283 | 0.0045265 | | Temperature feeding 91 - 92°C | 4 | 1.02610 | 0.25653 | 0.0058585 | | Temperature feeding 93 - 94°C | 4 | 0.98404 | 0.24601 | 0.0026147 | Based on table 9, the Fcount value is 57.870 and Ftable 4.26, so Fcount is greater than Ftable, meaning that H0 is rejected and H1 is accepted. While the significant value or probability is 0.000 < 0.05, meaning that H0 is rejected. These results indicate that there is a significant effect of temperature feeding process parameters on the average particle size results. The desired particle size standard is 0.210 - 0.235, the average particle size value is 0.22283 at the feeding temperature parameter of 89° C - 90° C. #### • Observation time In the case the hypothesis to be tested is: Ho: There is no significant effect of the observation time process parameter on the average particle size hasil 50 H1: There is a significant effect of the observation time process parameter on the averageparticle size result Table 10. Single factor anova test observation time | | 4 | | | | | | |---------------------|---------------|----|----------------|--------|---------|-------| | Source of Variation | Sum of Square | df | Mean of Square | Fcount | F table | Sig | | Between groups | 0.002 | 2 | 0.001 | 57.87 | 4.26 | 0.000 | | Within groups | 0.000 | 9 | 0.000 | | | | | Groups | Count | Sum | Average | Std Dev. | |---------------------------------|-------|---------|---------|-----------| | Observation time 89 - 90 minute | 4 | 0.98404 | 0.24601 | 0.0026147 | | Observation time 91 - 92 minute | 4 | 1.02610 | 0.25653 | 0.0058585 | 1st International Conference on Advanced Technology in Chemical Engineering ISSN: 2987-5064 | Observation time 93 minute | 4 | 0.89130 | 0.22283 | 0.0045265 | |----------------------------|---|---------|---------|-----------| Based on table 10, the Fcount value is 57.870 and Ftable 4.26, then Fcount is fleater than Ftable, meaning that H0 is rejected and H1 is accepted 6 While the significant value orprobability is 0.000 <0.05, meaning that H0 is rejected. These results indicate that there is a significant effect of the observation time process parameters on the average particle size results. The desired particle size standard is 0.210 - 0.235, the average particle size value is 0.22283 at the observation time parameter of 93 minutes. #### e. Effectiveness and Value of Deteriorating GP 31XXC Products After carrying out a series of experiments and evidence using the SPSS17.0 statistical method, the researchers summarized the results of the GP 31XXC production process after repairs were made to determine the effectiveness and value of the GP 31XXC product with problems. The results are as follows: Table 11. Troubled GP 31XXC Product drop | Period | GP 31XX C
Production Batch | GP 31XX C
NG Batch | | |---|-------------------------------|-----------------------|--| | Nov 2021 - Jan 2022 (before improvement) | 17 Batch | 10 batch | | | Feb 2022 - April 2022 (after improvement) | 39 Batch | 1 batch | | Based on the results of the analysis and discussion of the data, the authors obtain conclusions that can be drawn from research on Efforts to Reduce the Number of No-good GP31XXC Products Using Experimental Design Methods at PT 5HP as follows: - The results of this study indicate that the cause of the no-good GP 31XXC product is the technical production process, namely the cooling temperature parameters, feeding starting temperature, and observation time. These parameters are variables that havethe most significant influence on product problems. - 2. Proposed improvements with the aim of reducing the level of no-good GP 31XXC products at PT AHP are changes to standardization and validation of temperature and time parameters. The cooling temperature is from 93°C 95°C to 95°C 96°C, the starting temperature is feeding from 80°C to 89°C, and the observation time is from 90 minutes 120 minutes to a minimum of 93 minutes. - The decrease in no-good GP 31XXC products after improvements were made with the experimental design method using SPSS17.0 was decreased by 90%, from 10 batches to 1 batch. #### 3cknowledgment This work is supported by the Engineering Faculty Bhayangkara Jakarta Raya University. The authors also express gratitude to Departement Industrial Engineering for providing opportunities for growth through new and valuable research activities. This paper is an output of the science project. #### References - [1] Andiyanto, S., Sutrisno, A. (2016). Penarapan Metode FMEA (Failure Mode And Effect Analysis) Untuk Kuantifikasi Dan Pencegahan Resiko Akibat Terjadinya Lean Waste. Jurnal Online Poros Teknik Mesin, 6 (1). - [2] Aprilyanti, S., Suryani, F. (2020). Desain Eksperimen untuk Meningkatkan Kualitas Kekuatan Produk dengan 10 dekatan Analisis Desain Faktorial. Undip: Jurnal Teknik Industri, 15 (2). 102-107. - [3] Aprilyanti, S., Suryani, F. (2020). Penerapan Desain Eksperimen Taguchi Untuk Meningkatkan Kualitas Produksi Batu Bata Dari Sekam Padi. Undip: Jurnal Teknik Industri, 15 (19) 103-106. - [4] Ariani, D.W., Pengendalian Kualitas Statistik (Yogyakarta, 2003). 126. Ibnu Idham, P. (2014). Failure Mode 18 Effect Analysis. Fakultas Teknik, Politeknik Negeri Bandung. - [5] Montgomery, D,C (2013). Design and Analysis of Experiments 8th Edition: John Wiley & Sons, Inc. - [6] Laska, Eugene & Siegel, Carole & Meisner, Morris & Galatzer-Levy, Isaac. (2017). Statistics and Experimental Design. 1st International Conference on Advanced Technology in Chemical Engineering ISSN: 2987-5064 23 - [7] Irwan, S., Desain H5 perimen Dengan Metode Taguchi (Yogyakarta: Graha Ilmu, 2009), 51. Rahmiati, R., Chalis, H. (2018). Analisis Faktor Yang Berpengaruh Terhadap Kualitas Beriket Ampas Kelapa Dengan 16 nggunakan Desain Eksperimen. Elkawnie: Journal of Islamic Science and Technolog, 4 (1). 55-65 - [8] Krishnaiah, K. & Shahabudeen, P. (2012). Applied Design of Experiments and Taguchi Methods. PHI Learning Private Limite 13 New Delhi. - [9] Salomon, L. (2018). Desain Eksperimen Untuk Meningkatkan Kualitas Kekuatan Produk Dengan Pendekatan Analisis Desain Faktor 25 Jurnal Ilmiah Teknik Industri, 6 (3). 209-220. - [10] Oehlert, W. G. (2(11). A First Course in Design and Analysis of Experiments. University Of Minesota. - [11] Rahmatullah, S. (2018). Prediksi Alokasi Jumlah Produksi Minyak Sawit Dengan Metode Regresi Linier 12 ganda Pada PT Palm Lampung Persada. Jurnal Informasi dan Komunikasi, 6 (2), 61-69. - [12] Siska, M., Salam, R. (2012). Desain Eksperimen Pengaruh Zeolit Terhadap Penurunan Limbah Kadmium (Cd). Jurnal Ilmiah Te 21k Industri, 11 (2). 173-183. Sudjana. Desain Dan Analisis Eksperimen (Yogyakarta: Graha Ilmu, 2009), 97. Sudjana. Metoda Statistika (Bandung: Tarsito, 2005), 70. - [13] Suwanda, A15 Desain Eksperimen Untuk Penelitian Ilmiah (Bandung: Alfabeta, 2015). 115. - [14] Triadi, A. (2018). Design For Six Sigma Pada Pengembangan Konseptual Sistem Informasi Terintegrasi Studi Kasus Pada Toko X Grosir dan Eceran Cianjur. Seminar NasionalInovasi dan Aplikasi Teknologi di Industri, 2015-4218, 141-150. - 20) 5-4218. 141-150. Tjitro 24 Santoso, M. (2003). Desain Eksperimen untuk Mengoptimalkan Proses Pengecoran Saluran Keluar Teko. Fakultas Teknologi Industri, Jurusan Teknik Mesin Universitas Kristen Petra, 5 (1). 5-10. #### ORIGINALITY REPORT 16% SIMILARITY INDEX 12% 9% 9 **INTERNET SOURCES** **PUBLICATIONS** STUDENT PAPERS #### **PRIMARY SOURCES** Submitted to Wageningen University Student Paper 1 % Shahbaz Siddiqui, Sufian Hameed, Syed Attique Shah, Dirk Draheim. "An Adaptive Security Governance Architecture based on Smart Contracts for Syntactically Interoperable Services in Smart Cities", Institute of Electrical and Electronics Engineers (IEEE), 2023 Publication 3 repository.ubharajaya.ac.id Internet Source 1 % 4 Reeta Karra, Pooja Jain, P. N. Mishra. "Gender Bias for Income Opportunities in Villages: A Study of Kalisindh Thermal Power Project", Journal of National Development, 2018 1 % garuda.kemdikbud.go.id Internet Source 1 % 6 repository.uin-malang.ac.id % | 7 | www.emerald.com Internet Source | 1% | |----|--|-----| | 8 | journal.unpas.ac.id Internet Source | 1% | | 9 | digilib.uin-suka.ac.id Internet Source | 1 % | | 10 | ejournal.undip.ac.id Internet Source | 1% | | 11 | dcckotabumi.ac.id Internet Source | 1% | | 12 | core.ac.uk Internet Source | 1% | | 13 | repository.unsri.ac.id Internet Source | 1% | | 14 | nyshistoricnewspapers.org Internet Source | 1% | | 15 | repo.bunghatta.ac.id Internet Source | 1% | | 16 | link.springer.com Internet Source | <1% | | 17 | Lee, Hak-Joo, Jung-Min Cho, Inho Kim, Seung-Cheol Lee, Jong-Keuk Park, Young-Joon Baik, and Wook-Seong Lee. "An Insight into Grain Refinement Mechanism of | <1% | Ultrananocrystalline Diamond Films Obtained by Direct Current Plasma-Assisted Chemical Vapor Deposition: Grain Refinement Mechanism of Ultrananocrystalline Diamond Films", Plasma Processes and Polymers, 2014. | 18 | dergipark.org.tr Internet Source | <1% | |----|---|-----| | 19 | repositori.uma.ac.id Internet Source | <1% | | 20 | www.scirp.org Internet Source | <1% | | 21 | docplayer.info Internet Source | <1% | | 22 | journal.untar.ac.id Internet Source | <1% | | 23 | Djihad Wungguli, Jefri N. Isa, Muhammad
Rezky Friesta Payu, Nurwan Nurwan, Salmun
K Nasib, Stella Junus. "THE IMPLEMENTATION
OF THE TAGUCHI METHOD WITH
TRAPEZOIDAL FUZZY NUMBER IN THE TOFU
PRODUCTION PROCESS", BAREKENG: Jurnal
Ilmu Matematika dan Terapan, 2023
Publication | <1% | **Publication** Exclude quotes Off Exclude matches Off Exclude bibliography Off